
PuTTY User Manual

PuTTY is a free (MIT-licensed) Windows Telnet and SSH client. This manual documents
PuTTY, and its companion utilities PSCP, PSFTP, Plink, Pageant and PuTTYgen.

Note to Unix users:this manual currently primarily documents the Windows versions of the
PuTTY utilities. Some options are therefore mentioned that are absent from the Unix version;
the Unix version has features not described here; and thepterm and command-lineputtygen
and pageant utilities are not described at all. The only Unix-specific documentation that
currently exists is the man pages.

This manual is copyright 1997-2022 Simon Tatham. All rights reserved. You may distribute this
documentation under the MIT licence. See appendix D for the licence text in full.
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Chapter 1: Introduction to PuTTY

PuTTY is a free SSH, Telnet, Rlogin, and SUPDUP client for Windows systems.

1.1 What are SSH, Telnet, Rlogin, and SUPDUP?
If you already know what SSH, Telnet, Rlogin, and SUPDUP are, you can safely skip on to the
next section.

SSH, Telnet, Rlogin, and SUPDUP are four ways of doing the same thing: logging in to a multi-
user computer from another computer, over a network.

Multi-user operating systems, typically of the Unix family (such as Linux, MacOS, and the BSD
family), usually present a command-line interface to the user, much like the ‘Command Prompt’
or ‘MS-DOS Prompt’ in Windows. The system prints a prompt, and you type commands which
the system will obey.

Using this type of interface, there is no need for you to be sitting at the same machine you are
typing commands to. The commands, and responses, can be sent over a network, so you can sit
at one computer and give commands to another one, or even to more than one.

SSH, Telnet, Rlogin, and SUPDUP arenetwork protocolsthat allow you to do this. On the
computer you sit at, you run aclient, which makes a network connection to the other computer
(theserver). The network connection carries your keystrokes and commands from the client to
the server, and carries the server's responses back to you.

These protocols can also be used for other types of keyboard-based interactive session. In
particular, there are a lot of bulletin boards, talker systems and MUDs (Multi-User Dungeons)
which support access using Telnet. There are even a few that support SSH.

You might want to use SSH, Telnet, Rlogin, or SUPDUP if:

• you have an account on a Unix system (or some other multi-user OS such as VMS or ITS)
which you want to be able to access from somewhere else

• your Internet Service Provider provides you with a login account on a web server. (This
might also be known as ashell account. A shellis the program that runs on the server and
interprets your commands for you.)

• you want to use a bulletin board system, talker or MUD which can be accessed using Telnet.

You probably donotwant to use SSH, Telnet, Rlogin, or SUPDUP if:

• you only use Windows. Windows computers have their own ways of networking between
themselves, and unless you are doing something fairly unusual, you will not need to use
any of these remote login protocols.
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1.2 How do SSH, Telnet, Rlogin, and SUPDUP differ?
This list summarises some of the differences between SSH, Telnet, Rlogin, and SUPDUP.

• SSH (which stands for ‘secure shell’) is a recently designed, high-security protocol. It uses
strong cryptography to protect your connection against eavesdropping, hijacking and other
attacks. Telnet, Rlogin, and SUPDUP are all older protocols offering minimal security.

• SSH and Rlogin both allow you to log in to the server without having to type a password.
(Rlogin's method of doing this is insecure, and can allow an attacker to access your account
on the server. SSH's method is much more secure, and typically breaking the security
requires the attacker to have gained access to your actual client machine.)

• SSH allows you to connect to the server and automatically send a command, so that
the server will run that command and then disconnect. So you can use it in automated
processing.

The Internet is a hostile environment and security is everybody's responsibility. If you are
connecting across the open Internet, then we recommend you use SSH. If the server you want to
connect to doesn't support SSH, it might be worth trying to persuade the administrator to install
it.

If your client and server are both behind the same (good) firewall, it is more likely to be safe to
use Telnet, Rlogin, or SUPDUP, but we still recommend you use SSH.
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Chapter 2: Getting started with PuTTY

This chapter gives a quick guide to the simplest types of interactive login session using PuTTY.

2.1 Starting a session
When you start PuTTY, you will see a dialog box. This dialog box allows you to control
everything PuTTY can do. See chapter 4 for details of all the things you can control.

You don't usually need to change most of the configuration options. To start the simplest kind
of session, all you need to do is to enter a few basic parameters.

In the ‘Host Name’ box, enter the Internet host name of the server you want to connect to. You
should have been told this by the provider of your login account.

Now select a login protocol to use, from the ‘Connection type’ controls. For a login session,
you should select SSH, Telnet, Rlogin, or SUPDUP. See section 1.2 for a description of the
differences between these protocols, and advice on which one to use. TheRawprotocol is not
used for interactive login sessions; you would usually use this for debugging other Internet
services (see section 3.7). TheSerial option is used for connecting to a local serial line, and
works somewhat differently: see section 3.6 for more information on this.

When you change the selected protocol, the number in the ‘Port’ box will change. This is normal:
it happens because the various login services are usually provided on different network ports
by the server machine. Most servers will use the standard port numbers, so you will not need
to change the port setting. If your server provides login services on a non-standard port, your
system administrator should have told you which one. (For example, many MUDs run Telnet
service on a port other than 23.)

Once you have filled in the ‘Host Name’, ‘Connection type’, and possibly ‘Port’ settings, you
are ready to connect. Press the ‘Open’ button at the bottom of the dialog box, and PuTTY will
begin trying to connect you to the server.

2.2 Verifying the host key (SSH only)
If you are not using the SSH protocol, you can skip this section.

If you are using SSH to connect to a server for the first time, you will probably see a message
looking something like this:

The host key is not cached for this server:
 ssh.example.com (port 22)
You have no guarantee that the server is the computer you think it is.
The server's ssh-ed25519 key fingerprint is:
 ssh-ed25519 255 SHA256:TddlQk20DVs4LRcAsIfDN9pInKpY06D+h4kSHwWAj4w
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If you trust this host, press "Accept" to add the key to PuTTY's
cache and carry on connecting.
If you want to carry on connecting just once, without adding the key
to the cache, press "Connect Once".
If you do not trust this host, press "Cancel" to abandon the connection.

This is a feature of the SSH protocol. It is designed to protect you against a network attack known
asspoofing: secretly redirecting your connection to a different computer, so that you send your
password to the wrong machine. Using this technique, an attacker would be able to learn the
password that guards your login account, and could then log in as if they were you and use the
account for their own purposes.

To prevent this attack, each server has a unique identifying code, called ahost key. These keys
are created in a way that prevents one server from forging another server's key. So if you connect
to a server and it sends you a different host key from the one you were expecting, PuTTY can
warn you that the server may have been switched and that a spoofing attack might be in progress.

PuTTY records the host key for each server you connect to, in the Windows Registry. Every
time you connect to a server, it checks that the host key presented by the server is the same host
key as it was the last time you connected. If it is not, you will see a stronger warning, and you
will have the chance to abandon your connection before you type any private information (such
as a password) into it. (See section 10.2 for what that looks like.)

However, when you connect to a server you have not connected to before, PuTTY has no way
of telling whether the host key is the right one or not. So it gives the warning shown above, and
asks you whether you want to trust this host key or not.

Whether or not to trust the host key is your choice. If you are connecting within a company
network, you might feel that all the network users are on the same side and spoofing attacks are
unlikely, so you might choose to trust the key without checking it. If you are connecting across a
hostile network (such as the Internet), you should check with your system administrator, perhaps
by telephone or in person. (When verifying the fingerprint, be careful with letters and numbers
that can be confused with each other:0/O, 1/I /l , and so on.)

Many servers have more than one host key. If the system administrator sends you more than one
fingerprint, you should make sure the one PuTTY shows you is on the list, but it doesn't matter
which one it is.

If you don't have any fingerprints that look like the example (SHA256: followed by a
long string of characters), but instead have pairs of characters separated by colons like
a4:db:96:a7:... , try pressing the ‘More info...’ button and see if you have a fingerprint
matching the ‘MD5 fingerprint’ there. This is an older and less secure way to summarise the
same underlying host key; it's possible for an attacker to create their own host key with the same
fingerprint; so you should avoid relying on this fingerprint format unless you have no choice.
The ‘More info...’ dialog box also shows the full host public key, in case that is easier to compare
than a fingerprint.

See section 4.19 for advanced options for managing host keys.

2.3 Logging in
After you have connected, and perhaps verified the server's host key, you will be asked to log
in, probably using a username and a password. Your system administrator should have provided
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you with these. (If, instead, your system administrator has asked you to provide, or provided
you with, a ‘public key’ or ‘key file’, see chapter 8.)

PuTTY will display a text window (the ‘terminal window’ – it will have a black background
unless you've changed the defaults), and prompt you to type your username and password into
that window. (These prompts will include the PuTTY icon, to distinguish them from any text
sent by the server in the same window.)

Enter the username and the password, and the server should grant you access and begin your
session. If you have mistyped your password, most servers will give you several chances to get
it right.

While you are typing your password, you will not usually see the cursor moving in the window,
but PuTTYis registering what you type, and will send it when you press Return. (It works this
way to avoid revealing the length of your password to anyone watching your screen.)

If you are using SSH, be careful not to type your username wrongly, because you will not have
a chance to correct it after you press Return; many SSH servers do not permit you to make two
login attempts using different usernames. If you type your username wrongly, you must close
PuTTY and start again.

If your password is refused but you are sure you have typed it correctly, check that Caps Lock is
not enabled. Many login servers, particularly Unix computers, treat upper case and lower case
as different when checking your password; so if Caps Lock is on, your password will probably
be refused.

2.4 After logging in
After you log in to the server, what happens next is up to the server! Most servers will print some
sort of login message and then present a prompt, at which you can type commands which the
server will carry out. Some servers will offer you on-line help; others might not. If you are in
doubt about what to do next, consult your system administrator.

2.5 Logging out
When you have finished your session, you should log out by typing the server's own logout
command. This might vary between servers; if in doubt, trylogout or exit , or consult a
manual or your system administrator. When the server processes your logout command, the
PuTTY window should close itself automatically.

You canclose a PuTTY session using the Close button in the window border, but this might
confuse the server - a bit like hanging up a telephone unexpectedly in the middle of a
conversation. We recommend you do not do this unless the server has stopped responding to
you and you cannot close the window any other way.
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Chapter 3: Using PuTTY

This chapter provides a general introduction to some more advanced features of PuTTY. For
extreme detail and reference purposes, chapter 4 is likely to contain more information.

3.1 During your session
A lot of PuTTY's complexity and features are in the configuration panel. Once you have worked
your way through that and started a session, things should be reasonably simple after that.
Nevertheless, there are a few more useful features available.

3.1.1 Copying and pasting text

Often in a PuTTY session you will find text on your terminal screen which you want to type in
again. Like most other terminal emulators, PuTTY allows you to copy and paste the text rather
than having to type it again. Also, copy and paste uses the Windows clipboard, so that you can
paste (for example) URLs into a web browser, or paste from a word processor or spreadsheet
into your terminal session.

By default, PuTTY's copy and paste works entirely with the mouse. (This will be familiar to
people who have usedxterm on Unix.) In order to copy text to the clipboard, you just click
the left mouse button in the terminal window, and drag to select text. When you let go of the
button, the text isautomaticallycopied to the clipboard. You do not need to press Ctrl-C or Ctrl-
Ins; in fact, if you do press Ctrl-C, PuTTY will send a Ctrl-C character down your session to
the server where it will probably cause a process to be interrupted.

Pasting into PuTTY is done using the right button (or the middle mouse button, if you have
a three-button mouse and have set it up; see section 4.11.1). (Pressing Shift-Ins, or selecting
‘Paste’ from the Ctrl+right-click context menu, have the same effect.) When you click the
right mouse button, PuTTY will read whatever is in the Windows clipboard and paste it into
your session. By default, this behavesexactlyas if the clipboard contents had been typed at
the keyboard; therefore, be careful of pasting formatted text into an editor that does automatic
indenting, as you may find that the spaces pasted from the clipboard plus the spaces added by
the editor add up to too many spaces and ruin the formatting. (Some remote applications can ask
PuTTY to identify text that is being pasted, to avoid this sort of problem; but if your application
does not, there is nothing PuTTY can do to avoid this.)

If you double-click the left mouse button, PuTTY will select a whole word. If you double-click,
hold down the second click, and drag the mouse, PuTTY will select a sequence of whole words.
(You can adjust precisely what PuTTY considers to be part of a word; see section 4.12.1.) If you
triple-click, or triple-click and drag, then PuTTY will select a whole line or sequence of lines.

If you want to select a rectangular region instead of selecting to the end of each line, you can
do this by holding down Alt when you make your selection. You can also configure rectangular
selection to be the default, and then holding down Alt gives the normal behaviour instead: see
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section 4.11.3 for details.

(In some Unix environments, Alt+drag is intercepted by the window manager. Shift+Alt+drag
should work for rectangular selection as well, so you could try that instead.)

If you have a middle mouse button, then you can use it to adjust an existing selection if you
selected something slightly wrong. (If you have configured the middle mouse button to paste,
then the right mouse button does this instead.) Click the button on the screen, and you can pick
up the nearest end of the selection and drag it to somewhere else.

If you are running PuTTY itself on Unix (not just using it to connect to a Unix system from
Windows), by default you will likely have to use similar mouse actions in other applications to
paste the text you copied from PuTTY, and to copy text for pasting into PuTTY; actions like
Ctrl-C and Ctrl-V will likely not behave as you expect. Section 4.11.4 explains why this is, and
how you can change the behaviour. (On Windows there is only a single selection shared with
other applications, so this confusion does not arise.)

It's possible for the server to ask to handle mouse clicks in the PuTTY window itself. If this
happens, the mouse pointer will turn into an arrow, and using the mouse to copy and paste will
only work if you hold down Shift. See section 4.6.2 and section 4.11.2 for details of this feature
and how to configure it.

You can customise much of this behaviour, for instance to enable copy and paste from the
keyboard; see section 4.11.

3.1.2 Scrolling the screen back

PuTTY keeps track of text that has scrolled up off the top of the terminal. So if something
appears on the screen that you want to read, but it scrolls too fast and it's gone by the time you
try to look for it, you can use the scrollbar on the right side of the window to look back up the
session history and find it again.

As well as using the scrollbar, you can also page the scrollback up and down by pressing Shift-
PgUp and Shift-PgDn. You can scroll a line at a time using Ctrl-PgUp and Ctrl-PgDn, or to the
top/bottom of the scrollback with Ctrl-Shift-PgUp and Ctrl-Shift-PgDn. These are still available
if you configure the scrollbar to be invisible.

By default the last 2000 lines scrolled off the top are preserved for you to look at. You can
increase (or decrease) this value using the configuration box; see section 4.7.3.

3.1.3 The System menu

If you click the left mouse button on the icon in the top left corner of PuTTY's terminal window,
or click the right mouse button on the title bar, you will see the standard Windows system menu
containing items like Minimise, Move, Size and Close.

PuTTY's system menu contains extra program features in addition to the Windows standard
options. These extra menu commands are described below.

(These options are also available in a context menu brought up by holding Ctrl and clicking with
the right mouse button anywhere in the PuTTY window.)

3.1.3.1 The PuTTY Event Log

If you choose ‘Event Log’ from the system menu, a small window will pop up in which PuTTY
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logs significant events during the connection. Most of the events in the log will probably take
place during session startup, but a few can occur at any point in the session, and one or two
occur right at the end.

You can use the mouse to select one or more lines of the Event Log, and hit the Copy button to
copy them to the clipboard. If you are reporting a bug, it's often useful to paste the contents of
the Event Log into your bug report.

(The Event Log is not the same as the facility to create a log file of your session; that's described
in section 3.2.)

3.1.3.2 Special commands

Depending on the protocol used for the current session, there may be a submenu of ‘special
commands’. These are protocol-specific tokens, such as a ‘break’ signal, that can be sent down a
connection in addition to normal data. Their precise effect is usually up to the server. Currently
only Telnet, SSH, and serial connections have special commands.

The ‘break’ signal can also be invoked from the keyboard with Ctrl-Break.

In an SSH connection, the following special commands are available:

• IGNORE message

Should have no effect.

• Repeat key exchange

Only available in SSH-2. Forces a repeat key exchange immediately (and resets associated
timers and counters). For more information about repeat key exchanges, see section 4.18.2.

• Cache new host key type

Only available in SSH-2. This submenu appears only if the server has host keys of a type
that PuTTY doesn't already have cached, and so won't consider. Selecting a key here will
allow PuTTY to use that key now and in future: PuTTY will do a fresh key-exchange with
the selected key, and immediately add that key to its permanent cache (relying on the host
key used at the start of the connection to cross-certify the new key). That key will be used
for the rest of the current session; it may not actually be used for future sessions, depending
on your preferences (see section 4.19.1).

Normally, PuTTY will carry on using a host key it already knows, even if the server offers
key formats that PuTTY would otherwise prefer, to avoid host key prompts. As a result, if
you've been using a server for some years, you may still be using an older key than a new
user would use, due to server upgrades in the meantime. The SSH protocol unfortunately
does not have organised facilities for host key migration and rollover, but this allows you
to manually upgrade.

• Break

Only available in SSH-2, and only during a session. Optional extension; may not be
supported by server. PuTTY requests the server's default break length.

• Signals (SIGINT, SIGTERM etc)
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Only available in SSH-2, and only during a session. Sends various POSIX signals. Not
honoured by all servers.

The following special commands are available in Telnet:

• Are You There

• Break

• Synch

• Erase Character

PuTTY can also be configured to send this when the Backspace key is pressed; see section
4.30.3.

• Erase Line

• Go Ahead

• No Operation

Should have no effect.

• Abort Process

• Abort Output

• Interrupt Process

PuTTY can also be configured to send this when Ctrl-C is typed; see section 4.30.3.

• Suspend Process

PuTTY can also be configured to send this when Ctrl-Z is typed; see section 4.30.3.

• End Of Record

• End Of File

With a serial connection, the only available special command is ‘Break’.

3.1.3.3 Starting new sessions

PuTTY's system menu provides some shortcut ways to start new sessions:

• Selecting ‘New Session’ will start a completely new instance of PuTTY, and bring up the
configuration box as normal.

• Selecting ‘Duplicate Session’ will start a session in a new window with precisely the same
options as your current one - connecting to the same host using the same protocol, with all
the same terminal settings and everything.

• In an inactive window, selecting ‘Restart Session’ will do the same as ‘Duplicate Session’,
but in the current window.

• The ‘Saved Sessions’ submenu gives you quick access to any sets of stored session details
you have previously saved. See section 4.1.2 for details of how to create saved sessions.
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3.1.3.4 Changing your session settings

If you select ‘Change Settings’ from the system menu, PuTTY will display a cut-down version
of its initial configuration box. This allows you to adjust most properties of your current session.
You can change the terminal size, the font, the actions of various keypresses, the colours, and
so on.

Some of the options that are available in the main configuration box are not shown in the cut-
down Change Settings box. These are usually options which don't make sense to change in the
middle of a session (for example, you can't switch from SSH to Telnet in mid-session).

You can save the current settings to a saved session for future use from this dialog box. See
section 4.1.2 for more on saved sessions.

3.1.3.5 Copy All to Clipboard

This system menu option provides a convenient way to copy the whole contents of the terminal
screen (up to the last nonempty line) and scrollback to the clipboard in one go.

3.1.3.6 Clearing and resetting the terminal

The ‘Clear Scrollback’ option on the system menu tells PuTTY to discard all the lines of text that
have been kept after they scrolled off the top of the screen. This might be useful, for example,
if you displayed sensitive information and wanted to make sure nobody could look over your
shoulder and see it. (Note that this only prevents a casual user from using the scrollbar to view
the information; the text is not guaranteed not to still be in PuTTY's memory.)

The ‘Reset Terminal’ option causes a full reset of the terminal emulation. A VT-series terminal
is a complex piece of software and can easily get into a state where all the text printed becomes
unreadable. (This can happen, for example, if you accidentally output a binary file to your
terminal.) If this happens, selecting Reset Terminal should sort it out.

3.1.3.7 Full screen mode

If you find the title bar on a maximised window to be ugly or distracting, you can select Full
Screen mode to maximise PuTTY ‘even more’. When you select this, PuTTY will expand to
fill the whole screen and its borders, title bar and scrollbar will disappear. (You can configure
the scrollbar not to disappear in full-screen mode if you want to keep it; see section 4.7.3.)

When you are in full-screen mode, you can still access the system menu if you click the left
mouse button in theextremetop left corner of the screen.

3.2 Creating a log file of your session
For some purposes you may find you want to log everything that appears on your screen. You
can do this using the ‘Logging’ panel in the configuration box.

To begin a session log, select ‘Change Settings’ from the system menu and go to the Logging
panel. Enter a log file name, and select a logging mode. (You can log all session output including
the terminal control sequences, or you can just log the printable text. It depends what you want
the log for.) Click ‘Apply’ and your log will be started. Later on, you can go back to the Logging
panel and select ‘Logging turned off completely’ to stop logging; then PuTTY will close the
log file and you can safely read it.

See section 4.2 for more details and options.
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3.3 Altering your character set configuration
If you find that special characters (accented characters, for example, or line-drawing characters)
are not being displayed correctly in your PuTTY session, it may be that PuTTY is interpreting
the characters sent by the server according to the wrongcharacter set. There are a lot of different
character sets available, and no good way for PuTTY to know which to use, so it's entirely
possible for this to happen.

If you click ‘Change Settings’ and look at the ‘Translation’ panel, you should see a large number
of character sets which you can select, and other related options. Now all you need is to find
out which of them you want! (See section 4.10 for more information.)

3.4 Using X11 forwarding in SSH
The SSH protocol has the ability to securely forward X Window System graphical applications
over your encrypted SSH connection, so that you can run an application on the SSH server
machine and have it put its windows up on your local machine without sending any X network
traffic in the clear.

In order to use this feature, you will need an X display server for your Windows machine, such
as Cygwin/X, X-Win32, or Exceed. This will probably install itself as display number 0 on your
local machine; if it doesn't, the manual for the X server should tell you what it does do.

You should then tick the ‘Enable X11 forwarding’ box in the X11 panel (see section 4.25) before
starting your SSH session. The ‘X display location’ box is blank by default, which means that
PuTTY will try to use a sensible default such as:0 , which is the usual display location where
your X server will be installed. If that needs changing, then change it.

Now you should be able to log in to the SSH server as normal. To check that X forwarding has
been successfully negotiated during connection startup, you can check the PuTTY Event Log
(see section 3.1.3.1). It should say something like this:

2001-12-05 17:22:01 Requesting X11 forwarding
2001-12-05 17:22:02 X11 forwarding enabled

If the remote system is Unix or Unix-like, you should also be able to see that theDISPLAY
environment variable has been set to point at display 10 or above on the SSH server machine
itself:

fred@unixbox:~$ echo $DISPLAY
unixbox:10.0

If this works, you should then be able to run X applications in the remote session and have them
display their windows on your PC.

For more options relating to X11 forwarding, see section 4.25.

3.5 Using port forwarding in SSH
The SSH protocol has the ability to forward arbitrary network (TCP) connections over your
encrypted SSH connection, to avoid the network traffic being sent in clear. For example, you
could use this to connect from your home computer to a POP-3 server on a remote machine
without your POP-3 password being visible to network sniffers.
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In order to use port forwarding to connect from your local machine to a port on a remote server,
you need to:

• Choose a port number on your local machine where PuTTY should listen for incoming
connections. There are likely to be plenty of unused port numbers above 3000. (You can
also use a local loopback address here; see below for more details.)

• Now, before you start your SSH connection, go to the Tunnels panel (see section 4.26).
Make sure the ‘Local’ radio button is set. Enter the local port number into the ‘Source
port’ box. Enter the destination host name and port number into the ‘Destination’ box,
separated by a colon (for example,popserver.example.com:110 to connect to a
POP-3 server).

• Now click the ‘Add’ button. The details of your port forwarding should appear in the list
box.

Now start your session and log in. (Port forwarding will not be enabled until after you have
logged in; otherwise it would be easy to perform completely anonymous network attacks, and
gain access to anyone's virtual private network.) To check that PuTTY has set up the port
forwarding correctly, you can look at the PuTTY Event Log (see section 3.1.3.1). It should say
something like this:

2001-12-05 17:22:10 Local port 3110 forwarding to
         popserver.example.com:110

Now if you connect to the source port number on your local PC, you should find that it answers
you exactly as if it were the service running on the destination machine. So in this example,
you could then configure an e-mail client to uselocalhost:3110 as a POP-3 server instead
of popserver.example.com:110 . (Of course, the forwarding will stop happening when
your PuTTY session closes down.)

You can also forward ports in the other direction: arrange for a particular port number on the
servermachine to be forwarded back to your PC as a connection to a service on your PC or near
it. To do this, just select the ‘Remote’ radio button instead of the ‘Local’ one. The ‘Source port’
box will now specify a port number on theserver(note that most servers will not allow you to
use port numbers under 1024 for this purpose).

An alternative way to forward local connections to remote hosts is to use dynamic SOCKS
proxying. In this mode, PuTTY acts as a SOCKS server, which SOCKS-aware programs can
connect to and open forwarded connections to the destination of their choice, so this can be
an alternative to long lists of static forwardings. To use this mode, you will need to select the
‘Dynamic’ radio button instead of ‘Local’, and then you should not enter anything into the
‘Destination’ box (it will be ignored). PuTTY will then listen for SOCKS connections on the
port you have specified. Most web browsers can be configured to connect to this SOCKS proxy
service; also, you can forward other PuTTY connections through it by setting up the Proxy
control panel (see section 4.16 for details).

The source port for a forwarded connection usually does not accept connections from any
machine except the SSH client or server machine itself (for local and remote forwardings
respectively). There are controls in the Tunnels panel to change this:

• The ‘Local ports accept connections from other hosts’ option allows you to set up local-to-
remote port forwardings (including dynamic port forwardings) in such a way that machines
other than your client PC can connect to the forwarded port.
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• The ‘Remote ports do the same’ option does the same thing for remote-to-local port
forwardings (so that machines other than the SSH server machine can connect to the
forwarded port.) Note that this feature is only available in the SSH-2 protocol, and not all
SSH-2 servers honour it (in OpenSSH, for example, it's usually disabled by default).

You can also specify an IP address to listen on. Typically a Windows machine can be asked
to listen on any single IP address in the127.*.*.* range, and all of these are loopback
addresses available only to the local machine. So if you forward (for example)127.0.0.5:79
to a remote machine'sfinger port, then you should be able to run commands such as
finger fred@127.0.0.5 . This can be useful if the program connecting to the forwarded
port doesn't allow you to change the port number it uses. This feature is available for local-to-
remote forwarded ports; SSH-1 is unable to support it for remote-to-local ports, while SSH-2
can support it in theory but servers will not necessarily cooperate.

(Note that if you're using Windows XP Service Pack 2, you may need to obtain a fix from
Microsoft in order to use addresses like127.0.0.5 - see question A.7.17.)

For more options relating to port forwarding, see section 4.26.

If the connection you are forwarding over SSH is itself a second SSH connection made by
another copy of PuTTY, you might find the ‘logical host name’ configuration option useful to
warn PuTTY of which host key it should be expecting. See section 4.14.5 for details of this.

3.6 Connecting to a local serial line
PuTTY can connect directly to a local serial line as an alternative to making a network
connection. In this mode, text typed into the PuTTY window will be sent straight out of your
computer's serial port, and data received through that port will be displayed in the PuTTY
window. You might use this mode, for example, if your serial port is connected to another
computer which has a serial connection.

To make a connection of this type, simply select ‘Serial’ from the ‘Connection type’ radio
buttons on the ‘Session’ configuration panel (see section 4.1.1). The ‘Host Name’ and ‘Port’
boxes will transform into ‘Serial line’ and ‘Speed’, allowing you to specify which serial line to
use (if your computer has more than one) and what speed (baud rate) to use when transferring
data. For further configuration options (data bits, stop bits, parity, flow control), you can use the
‘Serial’ configuration panel (see section 4.29).

After you start up PuTTY in serial mode, you might find that you have to make the first move,
by sending some data out of the serial line in order to notify the device at the other end that
someone is there for it to talk to. This probably depends on the device. If you start up a PuTTY
serial session and nothing appears in the window, try pressing Return a few times and see if that
helps.

A serial line provides no well defined means for one end of the connection to notify the other
that the connection is finished. Therefore, PuTTY in serial mode will remain connected until
you close the window using the close button.

3.7 Making raw TCP connections
A lot of Internet protocols are composed of commands and responses in plain text. For example,
SMTP (the protocol used to transfer e-mail), NNTP (the protocol used to transfer Usenet news),
and HTTP (the protocol used to serve Web pages) all consist of commands in readable plain
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text.

Sometimes it can be useful to connect directly to one of these services and speak the protocol ‘by
hand’, by typing protocol commands and watching the responses. On Unix machines, you can
do this using the system'stelnet command to connect to the right port number. For example,
telnet mailserver.example.com 25 might enable you to talk directly to the SMTP
service running on a mail server.

Although the Unixtelnet program provides this functionality, the protocol being used is not
really Telnet. Really there is no actual protocol at all; the bytes sent down the connection are
exactly the ones you type, and the bytes shown on the screen are exactly the ones sent by the
server. Unixtelnet will attempt to detect or guess whether the service it is talking to is a real
Telnet service or not; PuTTY prefers to be told for certain.

In order to make a debugging connection to a service of this type, you simply select the fourth
protocol name, ‘Raw’, from the ‘Protocol’ buttons in the ‘Session’ configuration panel. (See
section 4.1.1.) You can then enter a host name and a port number, and make the connection.

3.8 Connecting using the Telnet protocol
PuTTY can use the Telnet protocol to connect to a server.

Telnet was perhaps the most popular remote login protocol before SSH was introduced. It was
general enough to be used by multiple server operating systems (Unix and VMS in particular),
and supported many optional protocol extensions providing extra support for particular server
features.

Unlike SSH, Telnet runs over an unsecured network connection, so it is a very bad idea to use
it over the hostile Internet (though it is still used to some extent as of 2020).

3.9 Connecting using the Rlogin protocol
PuTTY can use the Rlogin protocol to connect to a server.

Rlogin was similar to Telnet in concept, but more focused on connections between Unix
machines. It supported a feature for passwordless login, based on use of ‘privileged ports’ (ports
with numbers below 1024, which Unix traditionally does not allow users other thanroot to
allocate). Ultimately, based on the server trusting that the client's IP address was owned by
the Unix machine it claimed to be, and that that machine would guard its privileged ports
appropriately.

Like Telnet, Rlogin runs over an unsecured network connection.

3.10 Connecting using the SUPDUP protocol
PuTTY can use the SUPDUP protocol to connect to a server.

SUPDUP is a login protocol used mainly by PDP-10 and Lisp machines during the period 1975-
1990. Like Telnet and Rlogin, it is unsecured, so modern systems almost never support it.

To make a connection of this type, select ‘SUPDUP’ from the ‘Connection type’ radio buttons
on the ‘Session’ panel (see section 4.1.1). For further configuration options (character set, more
processing, scrolling), you can use the ‘SUPDUP’ configuration panel (see section 4.32).

In SUPDUP, terminal emulation is more integrated with the network protocol than in other
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protocols such as SSH. The SUPDUP protocol can thus only be used with PuTTY proper, not
with the command-line tool Plink.

The SUPDUP protocol does not support changing the terminal dimensions, so this capability is
disabled during a SUPDUP session.

SUPDUP provides no well defined means for one end of the connection to notify the other that
the connection is finished. Therefore, PuTTY in SUPDUP mode will remain connected until
you close the window using the close button.

3.11 The PuTTY command line
PuTTY can be made to do various things without user intervention by supplying command-line
arguments (e.g., from a command prompt window, or a Windows shortcut).

3.11.1 Starting a session from the command line

These options allow you to bypass the configuration window and launch straight into a session.

To start a connection to a server calledhost :

putty.exe [-ssh | -ssh-connection | -telnet | -rlogin | -supdup | -raw] [user@]host

If this syntax is used, settings are taken from the Default Settings (see section 4.1.2);user
overrides these settings if supplied. Also, you can specify a protocol, which will override the
default protocol (see section 3.11.3.2).

For telnet sessions, the following alternative syntax is supported (this makes PuTTY suitable
for use as a URL handler for telnet URLs in web browsers):

putty.exe telnet://host[:port]/

To start a connection to a serial port, e.g. COM1:

putty.exe -serial com1

In order to start an existing saved session calledsessionname , use the-load option
(described in section 3.11.3.1).

putty.exe -load "session name"

3.11.2 -cleanup

If invoked with the-cleanup option, rather than running as normal, PuTTY will remove its
registry entries and random seed file from the local machine (after confirming with the user).
It will also attempt to remove information about recently launched sessions stored in the ‘jump
list’ on Windows 7 and up.

Note that on multi-user systems,-cleanup only removes registry entries and files associated
with the currently logged-in user.

3.11.3 Standard command-line options

PuTTY and its associated tools support a range of command-line options, most of which are
consistent across all the tools. This section lists the available options in all tools. Options which
are specific to a particular tool are covered in the chapter about that tool.
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3.11.3.1 -load : load a saved session

The-load option causes PuTTY to load configuration details out of a saved session. If these
details include a host name, then this option is all you need to make PuTTY start a session.

You need double quotes around the session name if it contains spaces.

If you want to create a Windows shortcut to start a PuTTY saved session, this is the option you
should use: your shortcut should call something like

d:\path\to\putty.exe -load "my session"

(Note that PuTTY itself supports an alternative form of this option, for backwards compatibility.
If you execute putty @sessionname it will have the same effect asputty -
load "sessionname" . With the@form, no double quotes are required, and the@sign must
be the very first thing on the command line. This form of the option is deprecated.)

3.11.3.2 Selecting a protocol: -ssh , -ssh-connection , -telnet , -rlogin , -
supdup , -raw , -serial

To choose which protocol you want to connect with, you can use one of these options:

• -ssh selects the SSH protocol.

• -ssh-connection selects the bare ssh-connection protocol. (This is only useful in
specialised circumstances; see section 4.28 for more information.)

• -telnet selects the Telnet protocol.

• -rlogin selects the Rlogin protocol.

• -supdup selects the SUPDUP protocol.

• -raw selects the raw protocol.

• -serial selects a serial connection.

Most of these options are not available in the file transfer tools PSCP and PSFTP (which only
work with the SSH protocol and the bare ssh-connection protocol).

These options are equivalent to the protocol selection buttons in the Session panel of the PuTTY
configuration box (see section 4.1.1).

3.11.3.3 -v : increase verbosity

Most of the PuTTY tools can be made to tell you more about what they are doing by supplying
the-v option. If you are having trouble when making a connection, or you're simply curious,
you can turn this switch on and hope to find out more about what is happening.

3.11.3.4 -l : specify a login name

You can specify the user name to log in as on the remote server using the-l option. For example,
plink login.example.com -l fred .

These options are equivalent to the username selection box in the Connection panel of the
PuTTY configuration box (see section 4.15.1).
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3.11.3.5 -L , -R and -D : set up port forwardings

As well as setting up port forwardings in the PuTTY configuration (see section 4.26), you can
also set up forwardings on the command line. The command-line options work just like the ones
in Unix ssh programs.

To forward a local port (say 5110) to a remote destination (saypopserver.example.com
port 110), you can write something like one of these:

putty -L 5110:popserver.example.com:110 -load mysession
plink mysession -L 5110:popserver.example.com:110

To forward a remote port to a local destination, just use the-R option instead of-L :

putty -R 5023:mytelnetserver.myhouse.org:23 -load mysession
plink mysession -R 5023:mytelnetserver.myhouse.org:23

To specify an IP address for the listening end of the tunnel, prepend it to the argument:

plink -L 127.0.0.5:23:localhost:23 myhost

To set up SOCKS-based dynamic port forwarding on a local port, use the-D option. For this
one you only have to pass the port number:

putty -D 4096 -load mysession

For general information on port forwarding, see section 3.5.

These options are not available in the file transfer tools PSCP and PSFTP.

3.11.3.6 -m: read a remote command or script from a file

The-m option performs a similar function to the ‘Remote command’ box in the SSH panel of
the PuTTY configuration box (see section 4.17.1). However, the-m option expects to be given
a local file name, and it will read a command from that file.

With some servers (particularly Unix systems), you can even put multiple lines in this file and
execute more than one command in sequence, or a whole shell script; but this is arguably an
abuse, and cannot be expected to work on all servers. In particular, it is knownnot to work with
certain ‘embedded’ servers, such as Cisco routers.

This option is not available in the file transfer tools PSCP and PSFTP.

3.11.3.7 -P : specify a port number

The -P option is used to specify the port number to connect to. If you have a Telnet server
running on port 9696 of a machine instead of port 23, for example:

putty -telnet -P 9696 host.name
plink -telnet -P 9696 host.name

(Note that this option is more useful in Plink than in PuTTY, because in PuTTY you can write
putty -telnet host.name 9696 in any case.)

This option is equivalent to the port number control in the Session panel of the PuTTY
configuration box (see section 4.1.1).
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3.11.3.8 -pwfile and -pw : specify a password

A simple way to automate a remote login is to supply your password on the command line.

The-pwfile option takes a file name as an argument. The first line of text in that file will be
used as your password.

The-pw option takes the password itself as an argument. This isNOT SECURE if anybody else
uses the same computer, because the whole command line (including the password) is likely to
show up if another user lists the running processes.-pw is retained for backwards compatibility
only; you should use-pwfile instead.

Note that these options only work when you are using the SSH protocol. Due to fundamental
limitations of Telnet, Rlogin, and SUPDUP, these protocols do not support automated password
authentication.

3.11.3.9 -agent and -noagent : control use of Pageant for authentication

The -agent option turns on SSH authentication using Pageant, and-noagent turns it off.
These options are only meaningful if you are using SSH.

See chapter 9 for general information on Pageant.

These options are equivalent to the agent authentication checkbox in the Auth panel of the
PuTTY configuration box (see section 4.21.4).

3.11.3.10 -A and -a : control agent forwarding

The -A option turns on SSH agent forwarding, and-a turns it off. These options are only
meaningful if you are using SSH.

See chapter 9 for general information on Pageant, and section 9.4 for information on agent
forwarding. Note that there is a security risk involved with enabling this option; see section 9.6
for details.

These options are equivalent to the agent forwarding checkbox in the Auth panel of the PuTTY
configuration box (see section 4.21.7).

These options are not available in the file transfer tools PSCP and PSFTP.

3.11.3.11 -X and -x : control X11 forwarding

The -X option turns on X11 forwarding in SSH, and-x turns it off. These options are only
meaningful if you are using SSH.

For information on X11 forwarding, see section 3.4.

These options are equivalent to the X11 forwarding checkbox in the X11 panel of the PuTTY
configuration box (see section 4.25).

These options are not available in the file transfer tools PSCP and PSFTP.

3.11.3.12 -t and -T : control pseudo-terminal allocation

The-t option ensures PuTTY attempts to allocate a pseudo-terminal at the server, and-T stops
it from allocating one. These options are only meaningful if you are using SSH.
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These options are equivalent to the ‘Don't allocate a pseudo-terminal’ checkbox in the SSH
panel of the PuTTY configuration box (see section 4.24.1).

These options are not available in the file transfer tools PSCP and PSFTP.

3.11.3.13 -N : suppress starting a shell or command

The-N option prevents PuTTY from attempting to start a shell or command on the remote server.
You might want to use this option if you are only using the SSH connection for port forwarding,
and your user account on the server does not have the ability to run a shell.

This feature is only available in SSH protocol version 2 (since the version 1 protocol assumes
you will always want to run a shell).

This option is equivalent to the ‘Don't start a shell or command at all’ checkbox in the SSH
panel of the PuTTY configuration box (see section 4.17.2).

This option is not available in the file transfer tools PSCP and PSFTP.

3.11.3.14 -nc : make a remote network connection in place of a remote shell or
command

The-nc option prevents Plink (or PuTTY) from attempting to start a shell or command on the
remote server. Instead, it will instruct the remote server to open a network connection to a host
name and port number specified by you, and treat that network connection as if it were the main
session.

You specify a host and port as an argument to the-nc option, with a colon separating the host
name from the port number, like this:

plink host1.example.com -nc host2.example.com:1234

This can be useful if you're trying to make a connection to a target host which you can only reach
by SSH forwarding through a proxy host. One way to do this would be to have an existing SSH
connection to the proxy host, with a port forwarding, but if you prefer to have the connection
started on demand as needed, then this approach can also work.

However, this does depend on the programusingthe proxy being able to run a subprocess in
place of making a network connection. PuTTY itself can do this using the ‘Local’ proxy type,
but there's a built-in more flexible way using the ‘SSH’ proxy type. (See section 4.16.1 for a
description of both.) So this feature is probably most useful with another client program as the
end user.

This feature is only available in SSH protocol version 2 (since the version 1 protocol assumes
you will always want to run a shell). It is not available in the file transfer tools PSCP and PSFTP.
It is available in PuTTY itself, although it is unlikely to be very useful in any tool other than
Plink. Also, -nc uses the same server functionality as port forwarding, so it will not work if
your server administrator has disabled port forwarding.

(The option is named-nc after the Unix programnc , short for ‘netcat’. The
command ‘plink host1 -nc host2:port ’ is very similar in functionality to
‘plink host1 nc host2 port ’, which invokesnc on the server and tells it to connect
to the specified destination. However, Plink's built-in-nc option does not depend on thenc
program being installed on the server.)
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3.11.3.15 -C : enable compression

The -C option enables compression of the data sent across the network. This option is only
meaningful if you are using SSH.

This option is equivalent to the ‘Enable compression’ checkbox in the SSH panel of the PuTTY
configuration box (see section 4.17.3).

3.11.3.16 -1 and -2 : specify an SSH protocol version

The-1 and-2 options force PuTTY to use version 1 or version 2 of the SSH protocol. These
options are only meaningful if you are using SSH.

These options are equivalent to selecting the SSH protocol version in the SSH panel of the
PuTTY configuration box (see section 4.17.4).

3.11.3.17 -4 and -6 : specify an Internet protocol version

The-4 and-6 options force PuTTY to use the older Internet protocol IPv4 or the newer IPv6
for most outgoing connections.

These options are equivalent to selecting your preferred Internet protocol version as ‘IPv4’ or
‘IPv6’ in the Connection panel of the PuTTY configuration box (see section 4.14.4).

3.11.3.18 -i : specify an SSH private key

The -i option allows you to specify the name of a private key file in*.PPK format which
PuTTY will use to authenticate with the server. This option is only meaningful if you are using
SSH.

If you are using Pageant, you can also specify apublic key file (in RFC 4716 or OpenSSH
format) to identify a specific key file to use. (This won't work if you're not running Pageant, of
course.)

For general information on public-key authentication, see chapter 8.

This option is equivalent to the ‘Private key file for authentication’ box in the Auth panel of the
PuTTY configuration box (see section 4.22.1).

3.11.3.19 -cert : specify an SSH certificate

The-cert option allows you to specify the name of a certificate file containing a signed version
of your public key. If you specify this option, PuTTY will present that certificate in place of the
plain public key, whenever it tries to authenticate with a key that matches. (This applies whether
the key is stored in Pageant or loaded directly from a file by PuTTY.)

This option is equivalent to the ‘Certificate to use with the private key’ box in the Auth panel
of the PuTTY configuration box (see section 4.22.2).

3.11.3.20 -no-trivial-auth : disconnect if SSH authentication succeeds trivially

This option causes PuTTY to abandon an SSH session if the server accepts authentication
without ever having asked for any kind of password or signature or token.

See section 4.21.3 for why you might want this.
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3.11.3.21 -loghost : specify a logical host name

This option overrides PuTTY's normal SSH host key caching policy by telling it the name of
the host you expect your connection to end up at (in cases where this differs from the location
PuTTY thinks it's connecting to). It can be a plain host name, or a host name followed by a colon
and a port number. See section 4.14.5 for more detail on this.

3.11.3.22 -hostkey : manually specify an expected host key

This option overrides PuTTY's normal SSH host key caching policy by telling it exactly what
host key to expect, which can be useful if the normal automatic host key store in the Registry
is unavailable. The argument to this option should be either a host key fingerprint, or an SSH-2
public key blob. See section 4.19.3 for more information.

You can specify this option more than once if you want to configure more than one key to be
accepted.

3.11.3.23 -pgpfp : display PGP key fingerprints

This option causes the PuTTY tools not to run as normal, but instead to display the fingerprints
of the PuTTY PGP Master Keys, in order to aid with verifying new versions. See appendix F
for more information.

3.11.3.24 -sercfg : specify serial port configuration

This option specifies the configuration parameters for the serial port (baud rate, stop bits etc).
Its argument is interpreted as a comma-separated list of configuration options, which can be as
follows:

• Any single digit from 5 to 9 sets the number of data bits.

• ‘1’, ‘ 1.5 ’ or ‘ 2’ sets the number of stop bits.

• Any other numeric string is interpreted as a baud rate.

• A single lower-case letter specifies the parity: ‘n’ for none, ‘o’ for odd, ‘e’ for even, ‘m’
for mark and ‘s ’ for space.

• A single upper-case letter specifies the flow control: ‘N’ for none, ‘X’ for XON/XOFF, ‘R’
for RTS/CTS and ‘D’ for DSR/DTR.

For example, ‘-sercfg 19200,8,n,1,N ’ denotes a baud rate of 19200, 8 data bits, no
parity, 1 stop bit and no flow control.

3.11.3.25 -sessionlog , -sshlog , -sshrawlog : enable session logging

These options cause the PuTTY network tools to write out a log file. Each of them expects a file
name as an argument, e.g. ‘-sshlog putty.log ’ causes an SSH packet log to be written
to a file called ‘putty.log ’. The three different options select different logging modes, all
available from the GUI too:

• -sessionlog selects ‘All session output’ logging mode.

• -sshlog selects ‘SSH packets’ logging mode.

• -sshrawlog selects ‘SSH packets and raw data’ logging mode.
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For more information on logging configuration, see section 4.2.

3.11.3.26 -logoverwrite , -logappend : control behaviour with existing log file

If logging has been enabled (in the saved configuration, or by another command-line option),
and the specified log file already exists, these options tell the PuTTY network tools what to do
so that they don't have to ask the user. See section 4.2.2 for details.

3.11.3.27 -proxycmd : specify a local proxy command

This option enables PuTTY's mode for running a command on the local machine and using it
as a proxy for the network connection. It expects a shell command string as an argument.

See section 4.16.1 for more information on this, and on other proxy settings. In particular, note
that since the special sequences described there are understood in the argument string, literal
backslashes must be doubled (if you want\ in your command, you must put\\ on the command
line).

3.11.3.28 -restrict-acl : restrict the Windows process ACL

This option (on Windows only) causes PuTTY (or another PuTTY tool) to try to lock down
the operating system's access control on its own process. If this succeeds, it should present an
extra obstacle to malware that has managed to run under the same user id as the PuTTY process,
by preventing it from attaching to PuTTY using the same interfaces debuggers use and either
reading sensitive information out of its memory or hijacking its network session.

This option is not enabled by default, because this form of interaction between Windows
programs has many legitimate uses, including accessibility software such as screen readers.
Also, it cannot provide full security against this class of attack in any case, because PuTTY can
only lock down its own ACLafter it has started up, and malware could still get in if it attacks the
process between startup and lockdown. So it trades away noticeable convenience, and delivers
less real security than you might want. However, if you do want to make that tradeoff anyway,
the option is available.

A PuTTY process started with-restrict-acl will pass that on to any processes started
with Duplicate Session, New Session etc. (However, if you're invoking PuTTY tools explicitly,
for instance as a proxy command, you'll need to arrange to pass them the-restrict-acl
option yourself, if that's what you want.)

If Pageant is started with the-restrict-acl option, and you use it to launch a PuTTY
session from its System Tray submenu, then Pageant willnot default to starting the PuTTY
subprocess with a restricted ACL. This is because PuTTY is more likely to suffer reduced
functionality as a result of restricted ACLs (e.g. screen reader software will have a greater need
to interact with it), whereas Pageant stores the more critical information (hence benefits more
from the extra protection), so it's reasonable to want to run Pageant but not PuTTY with the
ACL restrictions. You can force Pageant to start subsidiary PuTTY processes with a restricted
ACL if you also pass the-restrict-putty-acl option.

3.11.3.29 -host-ca : launch the host CA configuration

If you start PuTTY with the-host-ca option, it will not launch a session at all. Instead, it
will just display the configuration dialog box for host certification authorities, as described in
section 4.19.4. When you dismiss that dialog box, PuTTY will terminate.
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Chapter 4: Configuring PuTTY

This chapter describes all the configuration options in PuTTY.

PuTTY is configured using the control panel that comes up before you start a session. Some
options can also be changed in the middle of a session, by selecting ‘Change Settings’ from the
window menu.

4.1 The Session panel
The Session configuration panel contains the basic options you need to specify in order to open
a session at all, and also allows you to save your settings to be reloaded later.

4.1.1 The host name section

The top box on the Session panel, labelled ‘Specify the destination you want to connect to’,
contains the details that need to be filled in before PuTTY can open a session at all.

• The ‘Host Name’ box is where you type the name, or the IP address, of the server you want
to connect to.

• The ‘Connection type’ controls let you choose what type of connection you want to make:
an SSH network connection, a connection to a local serial line, or various other kinds of
network connection.

• See section 1.2 for a summary of the differences between the network remote login
protocols SSH, Telnet, Rlogin, and SUPDUP.

• See section 3.6 for information about using a serial line.

• See section 3.7 for an explanation of ‘raw’ connections.

• See section 3.8 for a little information about Telnet.

• See section 3.9 for information about using Rlogin.

• See section 3.10 for information about using SUPDUP.

• The ‘Bare ssh-connection’ option in the ‘Connection type’ control is intended
for specialist uses not involving network connections. See section 4.28 for some
information about it.

• The ‘Port’ box lets you specify which port number on the server to connect to. If you select
Telnet, Rlogin, SUPDUP, or SSH, this box will be filled in automatically to the usual value,
and you will only need to change it if you have an unusual server. If you select Raw mode,
you will almost certainly need to fill in the ‘Port’ box yourself.
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If you select ‘Serial’ from the ‘Connection type’ radio buttons, the ‘Host Name’ and ‘Port’ boxes
are replaced by ‘Serial line’ and ‘Speed’; see section 4.29 for more details of these.

4.1.2 Loading and storing saved sessions

The next part of the Session configuration panel allows you to save your preferred PuTTY
options so they will appear automatically the next time you start PuTTY. It also allows you to
createsaved sessions, which contain a full set of configuration options plus a host name and
protocol. A saved session contains all the information PuTTY needs to start exactly the session
you want.

• To save your default settings: first set up the settings the way you want them saved. Then
come back to the Session panel. Select the ‘Default Settings’ entry in the saved sessions
list, with a single click. Then press the ‘Save’ button.

If there is a specific host you want to store the details of how to connect to, you should create a
saved session, which will be separate from the Default Settings.

• To save a session: first go through the rest of the configuration box setting up all the options
you want. Then come back to the Session panel. Enter a name for the saved session in the
‘Saved Sessions’ input box. (The server name is often a good choice for a saved session
name.) Then press the ‘Save’ button. Your saved session name should now appear in the
list box.

You can also save settings in mid-session, from the ‘Change Settings’ dialog. Settings
changed since the start of the session will be saved with their current values; as well as
settings changed through the dialog, this includes changes in window size, window title
changes sent by the server, and so on.

• To reload a saved session: single-click to select the session name in the list box, and then
press the ‘Load’ button. Your saved settings should all appear in the configuration panel.

• To modify a saved session: first load it as described above. Then make the changes you
want. Come back to the Session panel, and press the ‘Save’ button. The new settings will
be saved over the top of the old ones.

To save the new settings under a different name, you can enter the new name in the ‘Saved
Sessions’ box, or single-click to select a session name in the list box to overwrite that
session. To save ‘Default Settings’, you must single-click the name before saving.

• To start a saved session immediately: double-click on the session name in the list box.

• To delete a saved session: single-click to select the session name in the list box, and then
press the ‘Delete’ button.

Each saved session is independent of the Default Settings configuration. If you change your
preferences and update Default Settings, you must also update every saved session separately.

Saved sessions are stored in the Registry, at the location

HKEY_CURRENT_USER\Software\SimonTatham\PuTTY\Sessions

If you need to store them in a file, you could try the method described in section 4.33.
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4.1.3 ‘Close window on exit’

Finally in the Session panel, there is an option labelled ‘Close window on exit’. This controls
whether the PuTTY terminal window disappears as soon as the session inside it terminates. If
you are likely to want to copy and paste text out of the session after it has terminated, or restart
the session, you should arrange for this option to be off.

‘Close window on exit’ has three settings. ‘Always’ means always close the window on exit;
‘Never’ means never close on exit (always leave the window open, but inactive). The third
setting, and the default one, is ‘Only on clean exit’. In this mode, a session which terminates
normally will cause its window to close, but one which is aborted unexpectedly by network
trouble or a confusing message from the server will leave the window up.

4.2 The Logging panel

The Logging configuration panel allows you to save log files of your PuTTY sessions, for
debugging, analysis or future reference.

The main option is a radio-button set that specifies whether PuTTY will log anything at all. The
options are:

• ‘None’. This is the default option; in this mode PuTTY will not create a log file at all.

• ‘Printable output’. In this mode, a log file will be created and written to, but only printable
text will be saved into it. The various terminal control codes that are typically sent down
an interactive session alongside the printable text will be omitted. This might be a useful
mode if you want to read a log file in a text editor and hope to be able to make sense of it.

• ‘All session output’. In this mode,everythingsent by the server into your terminal session is
logged. If you view the log file in a text editor, therefore, you may well find it full of strange
control characters. This is a particularly useful mode if you are experiencing problems
with PuTTY's terminal handling: you can record everything that went to the terminal, so
that someone else can replay the session later in slow motion and watch to see what went
wrong.

• ‘SSH packets’. In this mode (which is only used by SSH connections), the SSH message
packets sent over the encrypted connection are written to the log file (as well as Event Log
entries). You might need this to debug a network-level problem, or more likely to send to
the PuTTY authors as part of a bug report.BE WARNEDthat if you log in using a password,
the password can appear in the log file; see section 4.2.5 for options that may help to remove
sensitive material from the log file before you send it to anyone else.

• ‘SSH packets and raw data’. In this mode, as well as the decrypted packets (as in the
previous mode), theraw (encrypted, compressed, etc) packets arealsologged. This could
be useful to diagnose corruption in transit. (The same caveats as the previous mode apply,
of course.)

Note that the non-SSH logging options (‘Printable output’ and ‘All session output’) only work
with PuTTY proper; in programs without terminal emulation (such as Plink), they will have no
effect, even if enabled via saved settings.
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4.2.1 ‘Log file name’

In this edit box you enter the name of the file you want to log the session to. The ‘Browse’ button
will let you look around your file system to find the right place to put the file; or if you already
know exactly where you want it to go, you can just type a pathname into the edit box.

There are a few special features in this box. If you use the& character in the file name box,
PuTTY will insert details of the current session in the name of the file it actually opens. The
precise replacements it will do are:

• &Ywill be replaced by the current year, as four digits.

• &Mwill be replaced by the current month, as two digits.

• &Dwill be replaced by the current day of the month, as two digits.

• &T will be replaced by the current time, as six digits (HHMMSS) with no punctuation.

• &Hwill be replaced by the host name you are connecting to.

• &Pwill be replaced by the port number you are connecting to on the target host.

For example, if you enter the host namec:\puttylogs\log-&h-&y&m&d-&t.dat , you
will end up with files looking like

log-server1.example.com-20010528-110859.dat
log-unixbox.somewhere.org-20010611-221001.dat

4.2.2 ‘What to do if the log file already exists’

This control allows you to specify what PuTTY should do if it tries to start writing to a log file
and it finds the file already exists. You might want to automatically destroy the existing log file
and start a new one with the same name. Alternatively, you might want to open the existing log
file and add data to theendof it. Finally (the default option), you might not want to have any
automatic behaviour, but to ask the user every time the problem comes up.

4.2.3 ‘Flush log file frequently’

This option allows you to control how frequently logged data is flushed to disc. By default,
PuTTY will flush data as soon as it is displayed, so that if you view the log file while a session
is still open, it will be up to date; and if the client system crashes, there's a greater chance that
the data will be preserved.

However, this can incur a performance penalty. If PuTTY is running slowly with logging
enabled, you could try unchecking this option. Be warned that the log file may not always be
up to date as a result (although it will of course be flushed when it is closed, for instance at the
end of a session).

4.2.4 ‘Include header’

This option allows you to choose whether to include a header line with the date and time when
the log file is opened. It may be useful to disable this if the log file is being used as realtime
input to other programs that don't expect the header line.
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4.2.5 Options specific to SSH packet logging

These options only apply if SSH packet data is being logged.

The following options allow particularly sensitive portions of unencrypted packets to be
automatically left out of the log file. They are only intended to deter casual nosiness; an
attacker could glean a lot of useful information from even these obfuscated logs (e.g., length of
password).

4.2.5.1 ‘Omit known password fields’

When checked, decrypted password fields are removed from the log of transmitted packets. (This
includes any user responses to challenge-response authentication methods such as ‘keyboard-
interactive’.) This does not include X11 authentication data if using X11 forwarding.

Note that this will only omit data that PuTTYknowsto be a password. However, if you start
another login session within your PuTTY session, for instance, any password used will appear
in the clear in the packet log. The next option may be of use to protect against this.

This option is enabled by default.

4.2.5.2 ‘Omit session data’

When checked, all decrypted ‘session data’ is omitted; this is defined as data in terminal sessions
and in forwarded channels (TCP, X11, and authentication agent). This will usually substantially
reduce the size of the resulting log file.

This option is disabled by default.

4.3 The Terminal panel

The Terminal configuration panel allows you to control the behaviour of PuTTY's terminal
emulation.

4.3.1 ‘Auto wrap mode initially on’

Auto wrap mode controls what happens when text printed in a PuTTY window reaches the right-
hand edge of the window.

With auto wrap mode on, if a long line of text reaches the right-hand edge, it will wrap over on
to the next line so you can still see all the text. With auto wrap mode off, the cursor will stay at
the right-hand edge of the screen, and all the characters in the line will be printed on top of each
other.

If you are running a full-screen application and you occasionally find the screen scrolling up
when it looks as if it shouldn't, you could try turning this option off.

Auto wrap mode can be turned on and off by control sequences sent by the server. This
configuration option controls thedefaultstate, which will be restored when you reset the terminal
(see section 3.1.3.6). However, if you modify this option in mid-session using ‘Change Settings’,
it will take effect immediately.
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4.3.2 ‘DEC Origin Mode initially on’

DEC Origin Mode is a minor option which controls how PuTTY interprets cursor-position
control sequences sent by the server.

The server can send a control sequence that restricts the scrolling region of the display. For
example, in an editor, the server might reserve a line at the top of the screen and a line at the
bottom, and might send a control sequence that causes scrolling operations to affect only the
remaining lines.

With DEC Origin Mode on, cursor coordinates are counted from the top of the scrolling region.
With it turned off, cursor coordinates are counted from the top of the whole screen regardless
of the scrolling region.

It is unlikely you would need to change this option, but if you find a full-screen application is
displaying pieces of text in what looks like the wrong part of the screen, you could try turning
DEC Origin Mode on to see whether that helps.

DEC Origin Mode can be turned on and off by control sequences sent by the server. This
configuration option controls thedefaultstate, which will be restored when you reset the terminal
(see section 3.1.3.6). However, if you modify this option in mid-session using ‘Change Settings’,
it will take effect immediately.

4.3.3 ‘Implicit CR in every LF’

Most servers send two control characters, CR and LF, to start a new line of the screen. The CR
character makes the cursor return to the left-hand side of the screen. The LF character makes
the cursor move one line down (and might make the screen scroll).

Some servers only send LF, and expect the terminal to move the cursor over to the left
automatically. If you come across a server that does this, you will see a stepped effect on the
screen, like this:

First line of text
                  Second line
                             Third line

If this happens to you, try enabling the ‘Implicit CR in every LF’ option, and things might go
back to normal:

First line of text
Second line
Third line

4.3.4 ‘Implicit LF in every CR’

Most servers send two control characters, CR and LF, to start a new line of the screen. The CR
character makes the cursor return to the left-hand side of the screen. The LF character makes
the cursor move one line down (and might make the screen scroll).

Some servers only send CR, and so the newly written line is overwritten by the following line.
This option causes a line feed so that all lines are displayed.
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4.3.5 ‘Use background colour to erase screen’

Not all terminals agree on what colour to turn the screen when the server sends a ‘clear screen’
sequence. Some terminals believe the screen should always be cleared to thedefaultbackground
colour. Others believe the screen should be cleared to whatever the server has selected as a
background colour.

There exist applications that expect both kinds of behaviour. Therefore, PuTTY can be
configured to do either.

With this option disabled, screen clearing is always done in the default background colour. With
this option enabled, it is done in thecurrentbackground colour.

Background-colour erase can be turned on and off by control sequences sent by the server.
This configuration option controls thedefaultstate, which will be restored when you reset the
terminal (see section 3.1.3.6). However, if you modify this option in mid-session using ‘Change
Settings’, it will take effect immediately.

4.3.6 ‘Enable blinking text’

The server can ask PuTTY to display text that blinks on and off. This is very distracting, so
PuTTY allows you to turn blinking text off completely.

When blinking text is disabled and the server attempts to make some text blink, PuTTY will
instead display the text with a bolded background colour.

Blinking text can be turned on and off by control sequences sent by the server. This configuration
option controls thedefaultstate, which will be restored when you reset the terminal (see section
3.1.3.6). However, if you modify this option in mid-session using ‘Change Settings’, it will take
effect immediately.

4.3.7 ‘Answerback to ^E’

This option controls what PuTTY will send back to the server if the server sends it the ^E enquiry
character. Normally it just sends the string ‘PuTTY’.

If you accidentally write the contents of a binary file to your terminal, you will probably find that
it contains more than one ^E character, and as a result your next command line will probably
read ‘PuTTYPuTTYPuTTY...’ as if you had typed the answerback string multiple times at the
keyboard. If you set the answerback string to be empty, this problem should go away, but doing
so might cause other problems.

Note that this isnot the feature of PuTTY which the server will typically use to determine your
terminal type. That feature is the ‘Terminal-type string’ in the Connection panel; see section
4.15.3 for details.

You can include control characters in the answerback string using^C notation. (Usê ~ to get
a literal^ .)

4.3.8 ‘Local echo’

With local echo disabled, characters you type into the PuTTY window are not echoed in the
window by PuTTY. They are simply sent to the server. (Theservermight choose to echo them
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back to you; this can't be controlled from the PuTTY control panel.)

Some types of session need local echo, and many do not. In its default mode, PuTTY will
automatically attempt to deduce whether or not local echo is appropriate for the session you are
working in. If you find it has made the wrong decision, you can use this configuration option to
override its choice: you can force local echo to be turned on, or force it to be turned off, instead
of relying on the automatic detection.

4.3.9 ‘Local line editing’

Normally, every character you type into the PuTTY window is sent immediately to the server
the moment you type it.

If you enable local line editing, this changes. PuTTY will let you edit a whole line at a time
locally, and the line will only be sent to the server when you press Return. If you make a mistake,
you can use the Backspace key to correct it before you press Return, and the server will never
see the mistake.

Since it is hard to edit a line locally without being able to see it, local line editing is mostly used
in conjunction with local echo (section 4.3.8). This makes it ideal for use in raw mode or when
connecting to MUDs or talkers. (Although some more advanced MUDs do occasionally turn
local line editing on and turn local echo off, in order to accept a password from the user.)

Some types of session need local line editing, and many do not. In its default mode, PuTTY will
automatically attempt to deduce whether or not local line editing is appropriate for the session
you are working in. If you find it has made the wrong decision, you can use this configuration
option to override its choice: you can force local line editing to be turned on, or force it to be
turned off, instead of relying on the automatic detection.

4.3.10 Remote-controlled printing

A lot of VT100-compatible terminals support printing under control of the remote server
(sometimes called ‘passthrough printing’). PuTTY supports this feature as well, but it is turned
off by default.

To enable remote-controlled printing, choose a printer from the ‘Printer to send ANSI printer
output to’ drop-down list box. This should allow you to select from all the printers you have
installed drivers for on your computer. Alternatively, you can type the network name of a
networked printer (for example,\\printserver\printer1 ) even if you haven't already
installed a driver for it on your own machine.

When the remote server attempts to print some data, PuTTY will send that data to the printer
raw - without translating it, attempting to format it, or doing anything else to it. It is up to you
to ensure your remote server knows what type of printer it is talking to.

Since PuTTY sends data to the printer raw, it cannot offer options such as portrait versus
landscape, print quality, or paper tray selection. All these things would be done by your PC
printer driver (which PuTTY bypasses); if you need them done, you will have to find a way to
configure your remote server to do them.

To disable remote printing again, choose ‘None (printing disabled)’ from the printer selection
list. This is the default state.
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4.4 The Keyboard panel
The Keyboard configuration panel allows you to control the behaviour of the keyboard in
PuTTY. The correct state for many of these settings depends on what the server to which
PuTTY is connecting expects. With a Unix server, this is likely to depend on thetermcap or
terminfo entry it uses, which in turn is likely to be controlled by the ‘Terminal-type string’
setting in the Connection panel; see section 4.15.3 for details. If none of the settings here seems
to help, you may find question A.7.13 to be useful.

4.4.1 Changing the action of the Backspace key

Some terminals believe that the Backspace key should send the same thing to the server as
Control-H (ASCII code 8). Other terminals believe that the Backspace key should send ASCII
code 127 (usually known as Control-?) so that it can be distinguished from Control-H. This
option allows you to choose which code PuTTY generates when you press Backspace.

If you are connecting over SSH, PuTTY by default tells the server the value of this option (see
section 4.24.2), so you may find that the Backspace key does the right thing either way. Similarly,
if you are connecting to a Unix system, you will probably find that the Unixstty command
lets you configure which the server expects to see, so again you might not need to change which
one PuTTY generates. On other systems, the server's expectation might be fixed and you might
have no choice but to configure PuTTY.

If you do have the choice, we recommend configuring PuTTY to generate Control-? and
configuring the server to expect it, because that allows applications such asemacs to use
Control-H for help.

(Typing Shift-Backspace will cause PuTTY to send whichever code isn't configured here as the
default.)

4.4.2 Changing the action of the Home and End keys

The Unix terminal emulatorrxvt disagrees with the rest of the world about what character
sequences should be sent to the server by the Home and End keys.

xterm , and other terminals, sendESC [1~ for the Home key, andESC [4~ for the End key.
rxvt sendsESC [H for the Home key andESC [Owfor the End key.

If you find an application on which the Home and End keys aren't working, you could try
switching this option to see if it helps.

4.4.3 Changing the action of the function keys and keypad

This option affects the function keys (F1 to F12) and the top row of the numeric keypad.

• In the default mode, labelledESC [n~ , the function keys generate sequences like
ESC [11~ , ESC [12~ and so on. This matches the general behaviour of Digital's
terminals.

• In Linux mode, F6 to F12 behave just like the default mode, but F1 to F5 generateESC [[A
through toESC [[E . This mimics the Linux virtual console.

• In Xterm R6 mode, F5 to F12 behave like the default mode, but F1 to F4 generateESC OP
through toESC OS, which are the sequences produced by the top row of thekeypadon
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Digital's terminals.

• In VT400 mode, all the function keys behave like the default mode, but the actual top row
of the numeric keypad generatesESC OPthrough toESC OS.

• In VT100+ mode, the function keys generateESC OPthrough toESC O[

• In SCO mode, the function keys F1 to F12 generateESC [Mthrough toESC [X. Together
with shift, they generateESC [Y through toESC [j . With control they generateESC [k
through toESC [v , and with shift and control together they generateESC [w through to
ESC [{ .

• In Xterm 216 mode, the unshifted function keys behave the same as Xterm R6 mode. But
pressing a function key together with Shift or Alt or Ctrl generates a different sequence
containing an extra numeric parameter of the form (1 for Shift) + (2 for Alt) + (4 for Ctrl)
+ 1. For F1-F4, the basic sequences likeESC OPbecomeESC [1; bitmapP and similar;
for F5 and above,ESC[index~ becomesESC[index; bitmap~.

If you don't know what any of this means, you probably don't need to fiddle with it.

4.4.4 Changing the action of the shifted arrow keys

This option affects the arrow keys, if you press one with any of the modifier keys Shift, Ctrl or
Alt held down.

• In the default mode, labelledCtrl toggles app mode , the Ctrl key toggles between
the default arrow-key sequences likeESC [A andESC [B, and the sequences Digital's
terminals generate in ‘application cursor keys’ mode, i.e.ESC O Aand so on. Shift and
Alt have no effect.

• In the ‘xterm-style bitmap’ mode, Shift, Ctrl and Alt all generate different sequences, with
a number indicating which set of modifiers is active.

If you don't know what any of this means, you probably don't need to fiddle with it.

4.4.5 Controlling Application Cursor Keys mode

Application Cursor Keys mode is a way for the server to change the control sequences sent by the
arrow keys. In normal mode, the arrow keys sendESC [A through toESC [D. In application
mode, they sendESC OAthrough toESC OD.

Application Cursor Keys mode can be turned on and off by the server, depending on the
application. PuTTY allows you to configure the initial state.

You can also disable application cursor keys mode completely, using the ‘Features’
configuration panel; see section 4.6.1.

4.4.6 Controlling Application Keypad mode

Application Keypad mode is a way for the server to change the behaviour of the numeric keypad.

In normal mode, the keypad behaves like a normal Windows keypad: with NumLock on, the
number keys generate numbers, and with NumLock off they act like the arrow keys and Home,
End etc.

In application mode, all the keypad keys send special control sequences,includingNum Lock.
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Num Lock stops behaving like Num Lock and becomes another function key.

Depending on which version of Windows you run, you may find the Num Lock light still flashes
on and off every time you press Num Lock, even when application mode is active and Num
Lock is acting like a function key. This is unavoidable.

Application keypad mode can be turned on and off by the server, depending on the application.
PuTTY allows you to configure the initial state.

You can also disable application keypad mode completely, using the ‘Features’ configuration
panel; see section 4.6.1.

4.4.7 Using NetHack keypad mode

PuTTY has a special mode for playing NetHack. You can enable it by selecting ‘NetHack’ in
the ‘Initial state of numeric keypad’ control.

In this mode, the numeric keypad keys 1-9 generate the NetHack movement commands
(hjklyubn ). The 5 key generates the. command (do nothing).

In addition, pressing Shift or Ctrl with the keypad keys generate the Shift- or Ctrl-keys you
would expect (e.g. keypad-7 generates ‘y ’, so Shift-keypad-7 generates ‘Y’ and Ctrl-keypad-7
generates Ctrl-Y); these commands tell NetHack to keep moving you in the same direction until
you encounter something interesting.

For some reason, this feature only works properly when Num Lock is on. We don't know why.

4.4.8 Enabling a DEC-like Compose key

DEC terminals have a Compose key, which provides an easy-to-remember way of typing
accented characters. You press Compose and then type two more characters. The two characters
are ‘combined’ to produce an accented character. The choices of character are designed to be
easy to remember; for example, composing ‘e’ and ‘`’ produces the ‘è’ character.

If your keyboard has a Windows Application key, it acts as a Compose key in PuTTY.
Alternatively, if you enable the ‘AltGr acts as Compose key’ option, the AltGr key will become
a Compose key.

4.4.9 ‘Control-Alt is different from AltGr’

Some old keyboards do not have an AltGr key, which can make it difficult to type some
characters. PuTTY can be configured to treat the key combination Ctrl + Left Alt the same way
as the AltGr key.

By default, this checkbox is checked, and the key combination Ctrl + Left Alt does something
completely different. PuTTY's usual handling of the left Alt key is to prefix the Escape (Control-
[ ) character to whatever character sequence the rest of the keypress would generate. For
example, Alt-A generates Escape followed bya. So Alt-Ctrl-A would generate Escape, followed
by Control-A.

If you uncheck this box, Ctrl-Alt will become a synonym for AltGr, so you can use it to type
extra graphic characters if your keyboard has any.

(However, Ctrl-Alt will never act as a Compose key, regardless of the setting of ‘AltGr acts as
Compose key’ described in section 4.4.8.)
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4.5 The Bell panel

The Bell panel controls the terminal bell feature: the server's ability to cause PuTTY to beep at
you.

In the default configuration, when the server sends the character with ASCII code 7 (Control-
G), PuTTY will play the Windows Default Beep sound. This is not always what you want the
terminal bell feature to do; the Bell panel allows you to configure alternative actions.

4.5.1 ‘Set the style of bell’

This control allows you to select various different actions to occur on a terminal bell:

• Selecting ‘None’ disables the bell completely. In this mode, the server can send as many
Control-G characters as it likes and nothing at all will happen.

• ‘Make default system alert sound’ is the default setting. It causes the Windows ‘Default
Beep’ sound to be played. To change what this sound is, or to test it if nothing seems to be
happening, use the Sound configurer in the Windows Control Panel.

• ‘Visual bell’ is a silent alternative to a beeping computer. In this mode, when the server
sends a Control-G, the whole PuTTY window will flash white for a fraction of a second.

• ‘Beep using the PC speaker’ is self-explanatory.

• ‘Play a custom sound file’ allows you to specify a particular sound file to be used by PuTTY
alone, or even by a particular individual PuTTY session. This allows you to distinguish
your PuTTY beeps from any other beeps on the system. If you select this option, you will
also need to enter the name of your sound file in the edit control ‘Custom sound file to play
as a bell’.

4.5.2 ‘Taskbar/caption indication on bell’

This feature controls what happens to the PuTTY window's entry in the Windows Taskbar if a
bell occurs while the window does not have the input focus.

In the default state (‘Disabled’) nothing unusual happens.

If you select ‘Steady’, then when a bell occurs and the window is not in focus, the window's
Taskbar entry and its title bar will change colour to let you know that PuTTY session is asking
for your attention. The change of colour will persist until you select the window, so you can
leave several PuTTY windows minimised in your terminal, go away from your keyboard, and
be sure not to have missed any important beeps when you get back.

‘Flashing’ is even more eye-catching: the Taskbar entry will continuously flash on and off until
you select the window.

4.5.3 ‘Control the bell overload behaviour’

A common user error in a terminal session is to accidentally run the Unix commandcat (or
equivalent) on an inappropriate file type, such as an executable, image file, or ZIP file. This
produces a huge stream of non-text characters sent to the terminal, which typically includes a
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lot of bell characters. As a result of this the terminal often doesn't stop beeping for ten minutes,
and everybody else in the office gets annoyed.

To try to avoid this behaviour, or any other cause of excessive beeping, PuTTY includes a
bell overload management feature. In the default configuration, receiving more than five bell
characters in a two-second period will cause the overload feature to activate. Once the overload
feature is active, further bells will have no effect at all, so the rest of your binary file will be
sent to the screen in silence. After a period of five seconds during which no further bells are
received, the overload feature will turn itself off again and bells will be re-enabled.

If you want this feature completely disabled, you can turn it off using the checkbox ‘Bell is
temporarily disabled when over-used’.

Alternatively, if you like the bell overload feature but don't agree with the settings, you can
configure the details: how many bells constitute an overload, how short a time period they have
to arrive in to do so, and how much silent time is required before the overload feature will
deactivate itself.

Bell overload mode is always deactivated by any keypress in the terminal. This means it can
respond to large unexpected streams of data, but does not interfere with ordinary command-line
activities that generate beeps (such as filename completion).

4.6 The Features panel

PuTTY's terminal emulation is very highly featured, and can do a lot of things under remote
server control. Some of these features can cause problems due to buggy or strangely configured
server applications.

The Features configuration panel allows you to disable some of PuTTY's more advanced
terminal features, in case they cause trouble.

4.6.1 Disabling application keypad and cursor keys

Application keypad mode (see section 4.4.6) and application cursor keys mode (see section
4.4.5) alter the behaviour of the keypad and cursor keys. Some applications enable these
modes but then do not deal correctly with the modified keys. You can force these modes to be
permanently disabled no matter what the server tries to do.

4.6.2 Disabling xterm -style mouse reporting

PuTTY allows the server to send control codes that let it take over the mouse and use it for
purposes other than copy and paste. Applications which use this feature include the text-mode
web browserlinks , the Usenet newsreadertrn version 4, and the file managermc(Midnight
Commander).

If you find this feature inconvenient, you can disable it using the ‘Disable xterm-style mouse
reporting’ control. With this box ticked, the mouse willalwaysdo copy and paste in the normal
way.

Note that even if the application takes over the mouse, you can still manage PuTTY's copy and
paste by holding down the Shift key while you select and paste, unless you have deliberately
turned this feature off (see section 4.11.2).
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4.6.3 Disabling remote terminal resizing

PuTTY has the ability to change the terminal's size and position in response to commands from
the server. If you find PuTTY is doing this unexpectedly or inconveniently, you can tell PuTTY
not to respond to those server commands.

4.6.4 Disabling switching to the alternate screen

Many terminals, including PuTTY, support an ‘alternate screen’. This is the same size as the
ordinary terminal screen, but separate. Typically a screen-based program such as a text editor
might switch the terminal to the alternate screen before starting up. Then at the end of the run,
it switches back to the primary screen, and you see the screen contents just as they were before
starting the editor.

Some people prefer this not to happen. If you want your editor to run in the same screen as the
rest of your terminal activity, you can disable the alternate screen feature completely.

4.6.5 Disabling remote window title changing

PuTTY has the ability to change the window title in response to commands from the server. If
you find PuTTY is doing this unexpectedly or inconveniently, you can tell PuTTY not to respond
to those server commands.

4.6.6 Response to remote window title querying

PuTTY can optionally provide the xterm service of allowing server applications to find out the
local window title. This feature is disabled by default, but you can turn it on if you really want
it.

NOTE that this feature is apotential security hazard. If a malicious application can write data
to your terminal (for example, if you merelycat a file owned by someone else on the server
machine), it can change your window title (unless you have disabled this as mentioned in section
4.6.5) and then use this service to have the new window title sent back to the server as if typed
at the keyboard. This allows an attacker to fake keypresses and potentially cause your server-
side applications to do things you didn't want. Therefore this feature is disabled by default, and
we recommend you do not set it to ‘Window title’ unless youreally know what you are doing.

There are three settings for this option:

‘None’

PuTTY makes no response whatsoever to the relevant escape sequence. This may upset
server-side software that is expecting some sort of response.

‘Empty string’

PuTTY makes a well-formed response, but leaves it blank. Thus, server-side software that
expects a response is kept happy, but an attacker cannot influence the response string. This
is probably the setting you want if you have no better ideas.

‘Window title’

PuTTY responds with the actual window title. This is dangerous for the reasons described
above.
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4.6.7 Disabling remote scrollback clearing

PuTTY has the ability to clear the terminal's scrollback buffer in response to a command from
the server. If you find PuTTY is doing this unexpectedly or inconveniently, you can tell PuTTY
not to respond to that server command.

4.6.8 Disabling destructive backspace

Normally, when PuTTY receives character 127 (^?) from the server, it will perform a ‘destructive
backspace’: move the cursor one space left and delete the character under it. This can apparently
cause problems in some applications, so PuTTY provides the ability to configure character 127
to perform a normal backspace (without deleting a character) instead.

4.6.9 Disabling remote character set configuration

PuTTY has the ability to change its character set configuration in response to commands from
the server. Some programs send these commands unexpectedly or inconveniently. In particular,
BitchX (an IRC client) seems to have a habit of reconfiguring the character set to something
other than the user intended.

If you find that accented characters are not showing up the way you expect them to, particularly
if you're running BitchX, you could try disabling the remote character set configuration
commands.

4.6.10 Disabling Arabic text shaping

PuTTY supports shaping of Arabic text, which means that if your server sends text written in
the basic Unicode Arabic alphabet then it will convert it to the correct display forms before
printing it on the screen.

If you are using full-screen software which was not expecting this to happen (especially if you
are not an Arabic speaker and you unexpectedly find yourself dealing with Arabic text files in
applications which are not Arabic-aware), you might find that the display becomes corrupted.
By ticking this box, you can disable Arabic text shaping so that PuTTY displays precisely the
characters it is told to display.

You may also find you need to disable bidirectional text display; see section 4.6.11.

4.6.11 Disabling bidirectional text display

PuTTY supports bidirectional text display, which means that if your server sends text written in
a language which is usually displayed from right to left (such as Arabic or Hebrew) then PuTTY
will automatically flip it round so that it is displayed in the right direction on the screen.

If you are using full-screen software which was not expecting this to happen (especially if you
are not an Arabic speaker and you unexpectedly find yourself dealing with Arabic text files in
applications which are not Arabic-aware), you might find that the display becomes corrupted.
By ticking this box, you can disable bidirectional text display, so that PuTTY displays text from
left to right in all situations.

You may also find you need to disable Arabic text shaping; see section 4.6.10.
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4.7 The Window panel
The Window configuration panel allows you to control aspects of the PuTTY window.

4.7.1 Setting the size of the PuTTY window

The ‘Columns’ and ‘Rows’ boxes let you set the PuTTY window to a precise size. Of course
you can also drag the window to a new size while a session is running.

4.7.2 What to do when the window is resized

These options allow you to control what happens when the user tries to resize the PuTTY window
using its window furniture.

There are four options here:

• ‘Change the number of rows and columns’: the font size will not change. (This is the
default.)

• ‘Change the size of the font’: the number of rows and columns in the terminal will stay the
same, and the font size will change.

• ‘Change font size when maximised’: when the window is resized, the number of rows and
columns will change,exceptwhen the window is maximised (or restored), when the font
size will change. (In this mode, holding down the Alt key while resizing will also cause
the font size to change.)

• ‘Forbid resizing completely’: the terminal will refuse to be resized at all.

4.7.3 Controlling scrollback

These options let you configure the way PuTTY keeps text after it scrolls off the top of the screen
(see section 3.1.2).

The ‘Lines of scrollback’ box lets you configure how many lines of text PuTTY keeps. The
‘Display scrollbar’ options allow you to hide the scrollbar (although you can still view the
scrollback using the keyboard as described in section 3.1.2). You can separately configure
whether the scrollbar is shown in full-screen mode and in normal modes.

If you are viewing part of the scrollback when the server sends more text to PuTTY, the screen
will revert to showing the current terminal contents. You can disable this behaviour by turning
off ‘Reset scrollback on display activity’. You can also make the screen revert when you press
a key, by turning on ‘Reset scrollback on keypress’.

4.7.4 ‘Push erased text into scrollback’

When this option is enabled, the contents of the terminal screen will be pushed into the scrollback
when a server-side application clears the screen, so that your scrollback will contain a better
record of what was on your screen in the past.

If the application switches to the alternate screen (see section 4.6.4 for more about this), then
the contents of the primary screen will be visible in the scrollback until the application switches
back again.

This option is enabled by default.

59



4.8 The Appearance panel

The Appearance configuration panel allows you to control aspects of the appearance of PuTTY's
window.

4.8.1 Controlling the appearance of the cursor

The ‘Cursor appearance’ option lets you configure the cursor to be a block, an underline, or a
vertical line. A block cursor becomes an empty box when the window loses focus; an underline
or a vertical line becomes dotted.

The ‘Cursor blinks’ option makes the cursor blink on and off. This works in any of the cursor
modes.

4.8.2 Controlling the font used in the terminal window

This option allows you to choose what font, in what size, the PuTTY terminal window uses to
display the text in the session.

By default, you will be offered a choice from all the fixed-width fonts installed on the system,
since VT100-style terminal handling expects a fixed-width font. If you tick the box marked
‘Allow selection of variable-pitch fonts’, however, PuTTY will offer variable-width fonts as
well: if you select one of these, the font will be coerced into fixed-size character cells, which
will probably not look very good (but can work OK with some fonts).

4.8.3 ‘Hide mouse pointer when typing in window’

If you enable this option, the mouse pointer will disappear if the PuTTY window is selected and
you press a key. This way, it will not obscure any of the text in the window while you work in
your session. As soon as you move the mouse, the pointer will reappear.

This option is disabled by default, so the mouse pointer remains visible at all times.

4.8.4 Controlling the window border

PuTTY allows you to configure the appearance of the window border to some extent.

The checkbox marked ‘Sunken-edge border’ changes the appearance of the window border to
something more like a DOS box: the inside edge of the border is highlighted as if it sank down
to meet the surface inside the window. This makes the border a little bit thicker as well. It's hard
to describe well. Try it and see if you like it.

You can also configure a completely blank gap between the text in the window and the border,
using the ‘Gap between text and window edge’ control. By default this is set at one pixel. You
can reduce it to zero, or increase it further.

4.9 The Behaviour panel

The Behaviour configuration panel allows you to control aspects of the behaviour of PuTTY's
window.
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4.9.1 Controlling the window title

The ‘Window title’ edit box allows you to set the title of the PuTTY window. By
default the window title will contain the host name followed by ‘PuTTY’, for example
server1.example.com - PuTTY . If you want a different window title, this is where to
set it.

PuTTY allows the server to sendxterm control sequences which modify the title of the window
in mid-session (unless this is disabled - see section 4.6.5); the title string set here is therefore
only theinitial window title.

As well as thewindowtitle, there is also anxterm sequence to modify the title of the window's
icon. This makes sense in a windowing system where the window becomes an icon when
minimised, such as Windows 3.1 or most X Window System setups; but in the Windows 95-
like user interface it isn't as applicable.

By default, PuTTY only uses the server-suppliedwindowtitle, and ignores the icon title entirely.
If for some reason you want to see both titles, check the box marked ‘Separate window and icon
titles’. If you do this, PuTTY's window title and Taskbar caption will change into the server-
supplied icon title if you minimise the PuTTY window, and change back to the server-supplied
window title if you restore it. (If the server has not bothered to supply a window or icon title,
none of this will happen.)

4.9.2 ‘Warn before closing window’

If you press the Close button in a PuTTY window that contains a running session, PuTTY will
put up a warning window asking if you really meant to close the window. A window whose
session has already terminated can always be closed without a warning.

If you want to be able to close a window quickly, you can disable the ‘Warn before closing
window’ option.

4.9.3 ‘Window closes on ALT-F4’

By default, pressing ALT-F4 causes the window to close (or a warning box to appear; see section
4.9.2). If you disable the ‘Window closes on ALT-F4’ option, then pressing ALT-F4 will simply
send a key sequence to the server.

4.9.4 ‘System menu appears on ALT-Space’

If this option is enabled, then pressing ALT-Space will bring up the PuTTY window's menu,
like clicking on the top left corner. If it is disabled, then pressing ALT-Space will just send
ESC SPACEto the server.

Some accessibility programs for Windows may need this option enabling to be able to control
PuTTY's window successfully. For instance, Dragon NaturallySpeaking requires it both to open
the system menu via voice, and to close, minimise, maximise and restore the window.

4.9.5 ‘System menu appears on Alt alone’

If this option is enabled, then pressing and releasing ALT will bring up the PuTTY window's
menu, like clicking on the top left corner. If it is disabled, then pressing and releasing ALT will
have no effect.
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4.9.6 ‘Ensure window is always on top’

If this option is enabled, the PuTTY window will stay on top of all other windows.

4.9.7 ‘Full screen on Alt-Enter’

If this option is enabled, then pressing Alt-Enter will cause the PuTTY window to become full-
screen. Pressing Alt-Enter again will restore the previous window size.

The full-screen feature is also available from the System menu, even when it is configured not
to be available on the Alt-Enter key. See section 3.1.3.7.

4.10 The Translation panel
The Translation configuration panel allows you to control the translation between the character
set understood by the server and the character set understood by PuTTY.

4.10.1 Controlling character set translation

During an interactive session, PuTTY receives a stream of 8-bit bytes from the server, and
in order to display them on the screen it needs to know what character set to interpret them
in. Similarly, PuTTY needs to know how to translate your keystrokes into the encoding the
server expects. Unfortunately, there is no satisfactory mechanism for PuTTY and the server to
communicate this information, so it must usually be manually configured.

There are a lot of character sets to choose from. The ‘Remote character set’ option lets you select
one.

By default PuTTY will use the UTF-8 encoding of Unicode, which can represent pretty much
any character; data coming from the server is interpreted as UTF-8, and keystrokes are sent UTF-
8 encoded. This is what most modern distributions of Linux will expect by default. However, if
this is wrong for your server, you can select a different character set using this control.

A few other notable character sets are:

• The ISO-8859 series are all standard character sets that include various accented characters
appropriate for different sets of languages.

• The Win125x series are defined by Microsoft, for similar purposes. In particular Win1252
is almost equivalent to ISO-8859-1, but contains a few extra characters such as matched
quotes and the Euro symbol.

• If you want the old IBM PC character set with block graphics and line-drawing characters,
you can select ‘CP437’.

If you need support for a numeric code page which is not listed in the drop-down list, such as code
page 866, then you can try entering its name manually (CP866 for example) in the list box. If
the underlying version of Windows has the appropriate translation table installed, PuTTY will
use it.

4.10.2 ‘Treat CJK ambiguous characters as wide’

There are some Unicode characters whose width is not well-defined. In most contexts, such
characters should be treated as single-width for the purposes of wrapping and so on; however,
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in some CJK contexts, they are better treated as double-width for historical reasons, and some
server-side applications may expect them to be displayed as such. Setting this option will cause
PuTTY to take the double-width interpretation.

If you use legacy CJK applications, and you find your lines are wrapping in the wrong places,
or you are having other display problems, you might want to play with this setting.

This option only has any effect in UTF-8 mode (see section 4.10.1).

4.10.3 ‘Caps Lock acts as Cyrillic switch’

This feature allows you to switch between a US/UK keyboard layout and a Cyrillic keyboard
layout by using the Caps Lock key, if you need to type (for example) Russian and English side
by side in the same document.

Currently this feature is not expected to work properly if your native keyboard layout is not US
or UK.

4.10.4 Controlling display of line-drawing characters

VT100-series terminals allow the server to send control sequences that shift temporarily into a
separate character set for drawing simple lines and boxes. However, there are a variety of ways
in which PuTTY can attempt to find appropriate characters, and the right one to use depends
on the locally configured font. In general you should probably try lots of options until you find
one that your particular font supports.

• ‘Use Unicode line drawing code points’ tries to use the box characters that are present
in Unicode. For good Unicode-supporting fonts this is probably the most reliable and
functional option.

• ‘Poor man's line drawing’ assumes that the fontcannotgenerate the line and box characters
at all, so it will use the+, - and| characters to draw approximations to boxes. You should
use this option if none of the other options works.

• ‘Font has XWindows encoding’ is for use with fonts that have a special encoding, where the
lowest 32 character positions (below the ASCII printable range) contain the line-drawing
characters. This is unlikely to be the case with any standard Windows font; it will probably
only apply to custom-built fonts or fonts that have been automatically converted from the
X Window System.

• ‘Use font in both ANSI and OEM modes’ tries to use the same font in two different
character sets, to obtain a wider range of characters. This doesn't always work; some fonts
claim to be a different size depending on which character set you try to use.

• ‘Use font in OEM mode only’ is more reliable than that, but can miss out other characters
from the main character set.

4.10.5 Controlling copy and paste of line drawing characters

By default, when you copy and paste a piece of the PuTTY screen that contains VT100 line and
box drawing characters, PuTTY will paste them in the form they appear on the screen: either
Unicode line drawing code points, or the ‘poor man's’ line-drawing characters+, - and| . The
checkbox ‘Copy and paste VT100 line drawing chars as lqqqk’ disables this feature, so line-
drawing characters will be pasted as the ASCII characters that were printed to produce them.
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This will typically mean they come out mostly asq andx , with a scattering ofjklmntuvw at
the corners. This might be useful if you were trying to recreate the same box layout in another
program, for example.

Note that this option only applies to line-drawing characters whichwereprinted by using the
VT100 mechanism. Line-drawing characters that were received as Unicode code points will
paste as Unicode always.

4.10.6 Combining VT100 line-drawing with UTF-8

If PuTTY is configured to treat data from the server as encoded in UTF-8, then by default it
disables the older VT100-style system of control sequences that cause the lower-case letters to
be temporarily replaced by line drawing characters.

The rationale is that in UTF-8 mode you don't need those control sequences anyway, because all
the line-drawing characters they access are available as Unicode characters already, so there's
no need for applications to put the terminal into a special state to get at them.

Also, it removes a risk of the terminalaccidentallygetting into that state: if you accidentally
write uncontrolled binary data to a non-UTF-8 terminal, it can be surprisingly common to find
that your next shell prompt appears as a sequence of line-drawing characters and then you have
to remember or look up how to get out of that mode. So by default, UTF-8 mode simply doesn't
havea confusing mode like that to get into, accidentally or on purpose.

However, not all applications will see it that way. Even UTF-8 terminal users will still sometimes
have to run software that tries to print line-drawing characters in the old-fashioned way. So the
configuration option ‘Enable VT100 line drawing even in UTF-8 mode’ puts PuTTY into a
hybrid mode in which it understands the VT100-style control sequences that change the meaning
of the ASCII lower case letters,andunderstands UTF-8.

4.11 The Selection panel
The Selection panel allows you to control the way copy and paste work in the PuTTY window.

4.11.1 Changing the actions of the mouse buttons

PuTTY's copy and paste mechanism is by default modelled on the Unixxterm application.
The X Window System uses a three-button mouse, and the convention in that system is that the
left button selects, the right button extends an existing selection, and the middle button pastes.

Windows often only has two mouse buttons, so when run on Windows, PuTTY is configurable.
In PuTTY's default configuration (‘Compromise’), theright button pastes, and themiddlebutton
(if you have one) extends a selection.

If you have a three-button mouse and you are already used to thexterm arrangement, you can
select it using the ‘Action of mouse buttons’ control.

Alternatively, with the ‘Windows’ option selected, the middle button extends, and the right
button brings up a context menu (on which one of the options is ‘Paste’). (This context menu
is always available by holding down Ctrl and right-clicking, regardless of the setting of this
option.)

(When PuTTY itself is running on Unix, it follows the X Window System convention.)
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4.11.2 ‘Shift overrides application's use of mouse’

PuTTY allows the server to send control codes that let it take over the mouse and use it for
purposes other than copy and paste. Applications which use this feature include the text-mode
web browserlinks , the Usenet newsreadertrn version 4, and the file managermc(Midnight
Commander).

When running one of these applications, pressing the mouse buttons no longer performs copy
and paste. If you do need to copy and paste, you can still do so if you hold down Shift while
you do your mouse clicks.

However, it is possible in theory for applications to even detect and make use of Shift + mouse
clicks. We don't know of any applications that do this, but in case someone ever writes one,
unchecking the ‘Shift overrides application's use of mouse’ checkbox will cause Shift + mouse
clicks to go to the server as well (so that mouse-driven copy and paste will be completely
disabled).

If you want to prevent the application from taking over the mouse at all, you can do this using
the Features control panel; see section 4.6.2.

4.11.3 Default selection mode

As described in section 3.1.1, PuTTY has two modes of selecting text to be copied to the
clipboard. In the default mode (‘Normal’), dragging the mouse from point A to point B selects
to the end of the line containing A, all the lines in between, and from the very beginning of the
line containing B. In the other mode (‘Rectangular block’), dragging the mouse between two
points defines a rectangle, and everything within that rectangle is copied.

Normally, you have to hold down Alt while dragging the mouse to select a rectangular block.
Using the ‘Default selection mode’ control, you can set rectangular selection as the default, and
then you have to hold down Alt to get thenormalbehaviour.

4.11.4 Assigning copy and paste actions to clipboards

Here you can configure which clipboard(s) are written or read by PuTTY's various copy and
paste actions.

Most platforms, including Windows, have a single system clipboard. On these platforms,
PuTTY provides a second clipboard-like facility by permitting you to paste the text you last
selected inthis window, whether or not it is currently also in the system clipboard. This is not
enabled by default.

The X Window System (which underlies most Unix graphical interfaces) provides multiple
clipboards (or ‘selections’), and many applications support more than one of them by a different
user interface mechanism. When PuTTY itself is running on Unix, it has more configurability
relating to these selections.

The two most commonly used selections are called ‘PRIMARY’ and ‘CLIPBOARD’; in
applications supporting both, the usual behaviour is thatPRIMARYis used by mouse-only
actions (selecting text automatically copies it toPRIMARY, and middle-clicking pastes from
PRIMARY), whereasCLIPBOARDis used by explicit Copy and Paste menu items or keypresses
such as Ctrl-C and Ctrl-V.
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4.11.4.1 ‘Auto-copy selected text’

The checkbox ‘Auto-copy selected text to system clipboard’ controls whether or not selecting
text in the PuTTY terminal window automatically has the side effect of copying it to the system
clipboard, without requiring a separate user interface action.

On X, the wording of this option is changed slightly so that ‘CLIPBOARD’ is mentioned in place
of the ‘system clipboard’. Text selected in the terminal window willalwaysbe automatically
placed in thePRIMARYselection, as is conventional, but if you tick this box, it willalso be
placed in ‘CLIPBOARD’ at the same time.

4.11.4.2 Choosing a clipboard for UI actions

PuTTY has three user-interface actions which can be configured to paste into the terminal (not
counting menu items). You can click whichever mouse button (if any) is configured to paste (see
section 4.11.1); you can press Shift-Ins; or you can press Ctrl-Shift-V, although that action is
not enabled by default.

You can configure which of the available clipboards each of these actions pastes from (including
turning the paste action off completely). On platforms with a single system clipboard (such
as Windows), the available options are to paste from that clipboard or to paste from PuTTY's
internal memory of the last selected text within that window. On X, the standard options are
CLIPBOARDor PRIMARY.

(PRIMARYis conceptually similar in that italsorefers to the last selected text – just across all
applications instead of just this window.)

The two keyboard options each come with a corresponding key to copyto the same clipboard.
Whatever you configure Shift-Ins to paste from, Ctrl-Ins will copy to the same location;
similarly, Ctrl-Shift-C will copy to whatever Ctrl-Shift-V pastes from.

On X, you can also enter a selection name of your choice. For example, there is a rarely-used
standard selection called ‘SECONDARY’, which Emacs (for example) can work with if you hold
down the Meta key while dragging to select or clicking to paste; if you configure a PuTTY
keyboard action to access this clipboard, then you can interoperate with other applications' use
of it. Another thing you could do would be to invent a clipboard name yourself, to create a special
clipboard sharedonlybetween instances of PuTTY, or between just instances configured in that
particular way.

4.11.5 ‘Permit control characters in pasted text’

It is possible for the clipboard to contain not just text (with newlines and tabs) but also control
characters such as ESC which could have surprising effects if pasted into a terminal session,
depending on what program is running on the server side. Copying text from a mischievous web
page could put such characters onto the clipboard.

By default, PuTTY filters out the more unusual control characters, only letting through the more
obvious text-formatting characters (newlines, tab, backspace, and DEL).

Setting this option stops this filtering; on paste, any character on the clipboard is sent to the
session uncensored. This might be useful if you are deliberately using control character pasting
as a simple form of scripting, for instance.

4.12 The Copy panel
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The Copy configuration panel controls behaviour specifically related to copying from the
terminal window to the clipboard.

4.12.1 Character classes

PuTTY will select a word at a time in the terminal window if you double-click to begin the drag.
This section allows you to control precisely what is considered to be a word.

Each character is given aclass, which is a small number (typically 0, 1 or 2). PuTTY considers
a single word to be any number of adjacent characters in the same class. So by modifying the
assignment of characters to classes, you can modify the word-by-word selection behaviour.

In the default configuration, the character classes are:

• Class 0 contains white space and control characters.

• Class 1 contains most punctuation.

• Class 2 contains letters, numbers and a few pieces of punctuation (the double quote, minus
sign, period, forward slash and underscore).

So, for example, if you assign the@symbol into character class 2, you will be able to select an
e-mail address with just a double click.

In order to adjust these assignments, you start by selecting a group of characters in the list box.
Then enter a class number in the edit box below, and press the ‘Set’ button.

This mechanism currently only covers ASCII characters, because it isn't feasible to expand the
list to cover the whole of Unicode.

Character class definitions can be modified by control sequences sent by the server. This
configuration option controls thedefaultstate, which will be restored when you reset the terminal
(see section 3.1.3.6). However, if you modify this option in mid-session using ‘Change Settings’,
it will take effect immediately.

4.12.2 Copying in Rich Text Format

If you enable ‘Copy to clipboard in RTF as well as plain text’, PuTTY will write formatting
information to the clipboard as well as the actual text you copy. The effect of this is that if you
paste into (say) a word processor, the text will appear in the word processor in the same font,
colour, and style (e.g. bold, underline) PuTTY was using to display it.

This option can easily be inconvenient, so by default it is disabled.

4.13 The Colours panel
The Colours panel allows you to control PuTTY's use of colour.

4.13.1 ‘Allow terminal to specify ANSI colours’

This option is enabled by default. If it is disabled, PuTTY will ignore any control sequences
sent by the server to request coloured text.

If you have a particularly garish application, you might want to turn this option off and make
PuTTY only use the default foreground and background colours.
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4.13.2 ‘Allow terminal to use xterm 256-colour mode’

This option is enabled by default. If it is disabled, PuTTY will ignore any control sequences sent
by the server which use the extended 256-colour mode supported by recent versions ofxterm .

If you have an application which is supposed to use 256-colour mode and it isn't working, you
may find you need to tell your server that your terminal supports 256 colours. On Unix, you
do this by ensuring that the setting ofTERMdescribes a 256-colour-capable terminal. You can
check this using a command such asinfocmp :

$ infocmp | grep colors
        colors#256 , cols#80, it#8, lines#24, pairs#256,

If you do not see ‘colors#256 ’ in the output, you may need to change your terminal setting.
On modern Linux machines, you could try ‘xterm-256color ’.

4.13.3 ‘Allow terminal to use 24-bit colour’

This option is enabled by default. If it is disabled, PuTTY will ignore any control sequences
sent by the server which use the control sequences supported by modern terminals to specify
arbitrary 24-bit RGB colour value.

4.13.4 ‘Indicate bolded text by changing...’

When the server sends a control sequence indicating that some text should be displayed in bold,
PuTTY can handle this in several ways. It can either change the font for a bold version, or use
the same font in a brighter colour, or it can do both (brighten the colourandembolden the font).
This control lets you choose which.

By default bold is indicated by colour, so non-bold text is displayed in light grey and bold text
is displayed in bright white (and similarly in other colours). If you change the setting to ‘The
font’ box, bold and non-bold text will be displayed in the same colour, and instead the font will
change to indicate the difference. If you select ‘Both’, the font and the colour will both change.

Some applications rely on ‘bold black’ being distinguishable from a black background; if you
choose ‘The font’, their text may become invisible.

4.13.5 ‘Attempt to use logical palettes’

Logical palettes are a mechanism by which a Windows application running on an 8-bit colour
display can select precisely the colours it wants instead of going with the Windows standard
defaults.

If you are not getting the colours you ask for on an 8-bit display, you can try enabling this option.
However, be warned that it's never worked very well.

4.13.6 ‘Use system colours’

Enabling this option will cause PuTTY to ignore the configured colours for ‘Default
Background/Foreground’ and ‘Cursor Colour/Text’ (see section 4.13.7), instead going with the
system-wide defaults.

Note that non-bold and bold text will be the same colour if this option is enabled. You might
want to change to indicating bold text by font changes (see section 4.13.4).
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4.13.7 Adjusting the colours in the terminal window

The main colour control allows you to specify exactly what colours things should be displayed
in. To modify one of the PuTTY colours, use the list box to select which colour you want to
modify. The RGB values for that colour will appear on the right-hand side of the list box. Now,
if you press the ‘Modify’ button, you will be presented with a colour selector, in which you can
choose a new colour to go in place of the old one. (You may also edit the RGB values directly
in the edit boxes, if you wish; each value is an integer from 0 to 255.)

PuTTY allows you to set the cursor colour, the default foreground and background, and the
precise shades of all the ANSI configurable colours (black, red, green, yellow, blue, magenta,
cyan, and white). You can also modify the precise shades used for the bold versions of these
colours; these are used to display bold text if you have chosen to indicate that by colour (see
section 4.13.4), and can also be used if the server asks specifically to use them. (Note that
‘Default Bold Background’ isnot the background colour used for bold text; it is only used if
the server specifically asks for a bold background.)

4.14 The Connection panel
The Connection panel allows you to configure options that apply to more than one type of
connection.

4.14.1 Using keepalives to prevent disconnection

If you find your sessions are closing unexpectedly (most often with ‘Connection reset by peer’)
after they have been idle for a while, you might want to try using this option.

Some network routers and firewalls need to keep track of all connections through them. Usually,
these firewalls will assume a connection is dead if no data is transferred in either direction after
a certain time interval. This can cause PuTTY sessions to be unexpectedly closed by the firewall
if no traffic is seen in the session for some time.

The keepalive option (‘Seconds between keepalives’) allows you to configure PuTTY to send
data through the session at regular intervals, in a way that does not disrupt the actual terminal
session. If you find your firewall is cutting idle connections off, you can try entering a non-
zero value in this field. The value is measured in seconds; so, for example, if your firewall cuts
connections off after ten minutes then you might want to enter 300 seconds (5 minutes) in the
box.

Note that keepalives are not always helpful. They help if you have a firewall which drops your
connection after an idle period; but if the network between you and the server suffers from
breaks in connectivity then keepalives can actually make things worse. If a session is idle, and
connectivity is temporarily lost between the endpoints, but the connectivity is restored before
either side tries to send anything, then there will be no problem - neither endpoint will notice
that anything was wrong. However, if one side does send something during the break, it will
repeatedly try to re-send, and eventually give up and abandon the connection. Then when
connectivity is restored, the other side will find that the first side doesn't believe there is an open
connection any more. Keepalives can make this sort of problem worse, because they increase
the probability that PuTTY will attempt to send data during a break in connectivity. (Other types
of periodic network activity can cause this behaviour; in particular, SSH-2 re-keys can have this
effect. See section 4.18.2.)

Therefore, you might find that keepalives help connection loss, or you might find they make it
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worse, depending on whatkindof network problems you have between you and the server.

Keepalives are only supported in Telnet and SSH; the Rlogin, SUPDUP, and Raw protocols offer
no way of implementing them. (For an alternative, see section 4.14.3.)

Note that if you are using SSH-1 and the server has a bug that makes it unable to deal with SSH-
1 ignore messages (see section 4.27.13), enabling keepalives will have no effect.

4.14.2 ‘Disable Nagle's algorithm’

Nagle's algorithm is a detail of TCP/IP implementations that tries to minimise the number of
small data packets sent down a network connection. With Nagle's algorithm enabled, PuTTY's
bandwidth usage will be slightly more efficient; with it disabled, you may find you get a faster
response to your keystrokes when connecting to some types of server.

The Nagle algorithm is disabled by default for interactive connections.

4.14.3 ‘Enable TCP keepalives’

NOTE:TCP keepalives should not be confused with the application-level keepalives described
in section 4.14.1. If in doubt, you probably want application-level keepalives; TCP keepalives
are provided for completeness.

The idea of TCP keepalives is similar to application-level keepalives, and the same caveats apply.
The main differences are:

• TCP keepalives are available onall network connection types, including Raw, Rlogin, and
SUPDUP.

• The interval between TCP keepalives is usually much longer, typically two hours; this is
set by the operating system, and cannot be configured within PuTTY.

• If the operating system does not receive a response to a keepalive, it may send out more in
quick succession and terminate the connection if no response is received.

TCP keepalives may be more useful for ensuring that half-open connections are terminated than
for keeping a connection alive.

TCP keepalives are disabled by default.

4.14.4 ‘Internet protocol version’

This option allows the user to select between the old and new Internet protocols and addressing
schemes (IPv4 and IPv6). The selected protocol will be used for most outgoing network
connections (including connections to proxies); however, tunnels have their own configuration,
for which see section 4.26.2.

The default setting is ‘Auto’, which means PuTTY will do something sensible and try to guess
which protocol you wanted. (If you specify a literal Internet address, it will use whichever
protocol that address implies. If you provide a hostname, it will see what kinds of address exist
for that hostname; it will use IPv6 if there is an IPv6 address available, and fall back to IPv4 if
not.)

If you need to force PuTTY to use a particular protocol, you can explicitly set this to ‘IPv4’ or
‘IPv6’.
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4.14.5 ‘Logical name of remote host’

This allows you to tell PuTTY that the host it will really end up connecting to is different from
where it thinks it is making a network connection.

You might use this, for instance, if you had set up an SSH port forwarding in one PuTTY session
so that connections to some arbitrary port (say,localhost port 10022) were forwarded to a
second machine's SSH port (say,foovax port 22), and then started a second PuTTY connecting
to the forwarded port.

In normal usage, the second PuTTY will access the host key cache under the host name and
port it actually connected to (i.e.localhost port 10022 in this example). Using the logical
host name option, however, you can configure the second PuTTY to cache the host key under
the name of the hostyouknow that it'sreally going to end up talking to (herefoovax ).

This can be useful if you expect to connect to the same actual server through many different
channels (perhaps because your port forwarding arrangements keep changing): by consistently
setting the logical host name, you can arrange that PuTTY will not keep asking you to reconfirm
its host key. Conversely, if you expect to use the same local port number for port forwardings to
lots of different servers, you probably didn't want any particular server's host key cached under
that local port number. (For this latter case, you could instead explicitly configure host keys in
the relevant sessions; see section 4.19.3.)

If you just enter a host name for this option, PuTTY will cache the SSH host key under the
default SSH port for that host, irrespective of the port you really connected to (since the typical
scenario is like the above example: you connect to a silly real port number and your connection
ends up forwarded to the normal port-22 SSH server of some other machine). To override this,
you can append a port number to the logical host name, separated by a colon. E.g. entering
‘ foovax:2200 ’ as the logical host name will cause the host key to be cached as if you had
connected to port 2200 offoovax .

If you provide a host name using this option, it is also displayed in other locations which contain
the remote host name, such as the default window title and the default SSH password prompt.
This reflects the fact that this is the host you'rereally connecting to, which is more important
than the mere means you happen to be using to contact that host. (This applies even if you're
using a protocol other than SSH.)

4.15 The Data panel

The Data panel allows you to configure various pieces of data which can be sent to the server
to affect your connection at the far end.

Each option on this panel applies to more than one protocol. Options which apply to only one
protocol appear on that protocol's configuration panels.

4.15.1 ‘Auto-login username’

All three of the SSH, Telnet, and Rlogin protocols allow you to specify what user name you want
to log in as, without having to type it explicitly every time. (Some Telnet servers don't support
this.)

In this box you can type that user name.
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4.15.2 Use of system username

When the previous box (section 4.15.1) is left blank, by default, PuTTY will prompt for a
username at the time you make a connection.

In some environments, such as the networks of large organisations implementing single sign-
on, a more sensible default may be to use the name of the user logged in to the local operating
system (if any); this is particularly likely to be useful with GSSAPI key exchange and user
authentication (see section 4.23 and section 4.18.1.1). This control allows you to change the
default behaviour.

The current system username is displayed in the dialog as a convenience. It is not saved in the
configuration; if a saved session is later used by a different user, that user's name will be used.

4.15.3 ‘Terminal-type string’

Most servers you might connect to with PuTTY are designed to be connected to from lots of
different types of terminal. In order to send the right control sequences to each one, the server
will need to know what type of terminal it is dealing with. Therefore, each of the SSH, Telnet,
and Rlogin protocols allow a text string to be sent down the connection describing the terminal.
On a Unix server, this selects an entry from thetermcap or terminfo database that tells
applications what control sequences to send to the terminal, and what character sequences to
expect the keyboard to generate.

PuTTY attempts to emulate the Unixxterm program, and by default it reflects this by sending
xterm as a terminal-type string. If you find this is not doing what you want - perhaps the remote
system reports ‘Unknown terminal type’ - you could try setting this to something different, such
asvt220 .

If you're not sure whether a problem is due to the terminal type setting or not, you probably need
to consult the manual for your application or your server.

4.15.4 ‘Terminal speeds’

The Telnet, Rlogin, and SSH protocols allow the client to specify terminal speeds to the server.

This parameter doesnot affect the actual speed of the connection, which is always ‘as fast as
possible’; it is just a hint that is sometimes used by server software to modify its behaviour. For
instance, if a slow speed is indicated, the server may switch to a less bandwidth-hungry display
mode.

The value is usually meaningless in a network environment, but PuTTY lets you configure it,
in case you find the server is reacting badly to the default value.

The format is a pair of numbers separated by a comma, for instance,38400,38400 . The first
number represents the output speed (from the server) in bits per second, and the second is the
input speed (to the server). (Only the first is used in the Rlogin protocol.)

This option has no effect on Raw connections.

4.15.5 Setting environment variables on the server

The Telnet protocol provides a means for the client to pass environment variables to the server.
Many Telnet servers have stopped supporting this feature due to security flaws, but PuTTY
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still supports it for the benefit of any servers which have found other ways around the security
problems than just disabling the whole mechanism.

Version 2 of the SSH protocol also provides a similar mechanism, which is easier to implement
without security flaws. Newer SSH-2 servers are more likely to support it than older ones.

This configuration data is not used in the SSH-1, rlogin or raw protocols.

To add an environment variable to the list transmitted down the connection, you enter the variable
name in the ‘Variable’ box, enter its value in the ‘Value’ box, and press the ‘Add’ button. To
remove one from the list, select it in the list box and press ‘Remove’.

4.16 The Proxy panel

The Proxy panel allows you to configure PuTTY to use various types of proxy in order to make its
network connections. The settings in this panel affect the primary network connection forming
your PuTTY session, and also any extra connections made as a result of SSH port forwarding
(see section 3.5).

Note that unlike some software (such as web browsers), PuTTY does not attempt to
automatically determine whether to use a proxy and (if so) which one to use for a given
destination. If you need to use a proxy, it must always be explicitly configured.

4.16.1 Setting the proxy type

The ‘Proxy type’ drop-down allows you to configure what type of proxy you want PuTTY to
use for its network connections. The default setting is ‘None’; in this mode no proxy is used for
any connection.

• Selecting ‘HTTP CONNECT’ allows you to proxy your connections through a web server
supporting the HTTPCONNECTcommand, as documented in RFC 2817.

• Selecting ‘SOCKS 4’ or ‘SOCKS 5’ allows you to proxy your connections through a
SOCKS server.

• Many firewalls implement a less formal type of proxy in which a user can make a
Telnet or TCP connection directly to the firewall machine and enter a command such as
connect myhost.com 22 to connect through to an external host. Selecting ‘Telnet’
allows you to tell PuTTY to use this type of proxy, with the precise command specified as
described in section 4.16.5.

• There are several ways to use a SSH server as a proxy. All of these cause PuTTY to make
a secondary SSH connection to the proxy host (sometimes called a ‘jump host’ in this
context).

The ‘Proxy hostname’ field will be interpreted as the name of a PuTTY saved session if
one exists, or a hostname if not. This allows multi-hop jump paths, if the referenced saved
session is itself configured to use an SSH proxy; and it allows combining SSH and non-
SSH proxying.

• ‘SSH to proxy and use port forwarding’ causes PuTTY to use the secondary SSH
connection to open a port-forwarding channel to the final destination host (similar to
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OpenSSH's-J option).

• ‘SSH to proxy and execute a command’ causes PuTTY to run an arbitrary remote
command on the proxy SSH server and use that command's standard input and output
streams to run the primary connection over. The remote command line is specified as
described in section 4.16.5.

• ‘SSH to proxy and invoke a subsystem’ is similar but causes PuTTY to start an
SSH ‘subsystem’ rather than an ordinary command line. This might be useful with a
specially set up SSH proxy server.

• Selecting ‘Local’ allows you to specify an arbitrary command on the local machine to act
as a proxy. When the session is started, instead of creating a TCP connection, PuTTY runs
the command (specified in section 4.16.5), and uses its standard input and output streams.

This could be used, for instance, to talk to some kind of network proxy that PuTTY does
not natively support; or you could tunnel a connection over something other than TCP/IP
entirely.

You can also enable this mode on the command line; see section 3.11.3.27.

4.16.2 Excluding parts of the network from proxying

Typically you will only need to use a proxy to connect to non-local parts of your network;
for example, your proxy might be required for connections outside your company's internal
network. In the ‘Exclude Hosts/IPs’ box you can enter ranges of IP addresses, or ranges of DNS
names, for which PuTTY will avoid using the proxy and make a direct connection instead.

The ‘Exclude Hosts/IPs’ box may contain more than one exclusion range, separated by commas.
Each range can be an IP address or a DNS name, with a* character allowing wildcards. For
example:

*.example.com

This excludes any host with a name ending in.example.com from proxying.

192.168.88.*

This excludes any host with an IP address starting with 192.168.88 from proxying.

192.168.88.*,*.example.com

This excludes both of the above ranges at once.

Connections to the local host (the host namelocalhost , and any loopback IP address) are
never proxied, even if the proxy exclude list does not explicitly contain them. It is very unlikely
that this behaviour would ever cause problems, but if it does you can change it by enabling
‘Consider proxying local host connections’.

Note that if you are doing DNS at the proxy (see section 4.16.3), you should make sure that
your proxy exclusion settings do not depend on knowing the IP address of a host. If the name
is passed on to the proxy without PuTTY looking it up, it will never know the IP address and
cannot check it against your list.
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4.16.3 Name resolution when using a proxy

If you are using a proxy to access a private network, it can make a difference whether DNS name
resolution is performed by PuTTY itself (on the client machine) or performed by the proxy.

The ‘Do DNS name lookup at proxy end’ configuration option allows you to control this. If you
set it to ‘No’, PuTTY will always do its own DNS, and will always pass an IP address to the
proxy. If you set it to ‘Yes’, PuTTY will always pass host names straight to the proxy without
trying to look them up first.

If you set this option to ‘Auto’ (the default), PuTTY will do something it considers appropriate
for each type of proxy. Most types of proxy (HTTP, SOCK5, SSH, Telnet, and local) will have
host names passed straight to them; SOCKS4 proxies will not.

Note that if you are doing DNS at the proxy, you should make sure that your proxy exclusion
settings (see section 4.16.2) do not depend on knowing the IP address of a host. If the name
is passed on to the proxy without PuTTY looking it up, it will never know the IP address and
cannot check it against your list.

The original SOCKS 4 protocol does not support proxy-side DNS. There is a protocol extension
(SOCKS 4A) which does support it, but not all SOCKS 4 servers provide this extension. If you
enable proxy DNS and your SOCKS 4 server cannot deal with it, this might be why.

If you want to avoid PuTTY makingany DNS query related to your destination host name
(for example, because your local DNS resolver is very slow to return a negative response in
that situation), then as well as setting this control to ‘Yes’, you may also need to turn off
GSSAPI authentication and GSSAPI key exchange in SSH (see section 4.23 and section 4.18.1.1
respectively). This is because GSSAPI setup also involves a DNS query for the destination host
name, and that query is performed by the separate GSSAPI library, so PuTTY can't override or
reconfigure it.

4.16.4 Username and password

You can enter a username and a password in the ‘Username’ and ‘Password’ boxes, which will
be used if your proxy requires authentication.

Note that if you save your session, the proxy password will be saved in plain text, so anyone
who can access your PuTTY configuration data will be able to discover it.

If PuTTY discovers that it needs a proxy username or password and you have not specified one
here, PuTTY will prompt for it interactively in the terminal window.

Authentication is not fully supported for all forms of proxy:

• Username and password authentication is supported for HTTP proxies and SOCKS 5
proxies.

• With SOCKS 5, authentication is via CHAP if the proxy supports it (this is not
supported in PuTTYtel); otherwise the password is sent to the proxy in plain text.

• With HTTP proxying, authentication is via ‘HTTP Digest’ if possible (again, not
supported in PuTTYtel), or ‘HTTP Basic’. In the latter case, the password is sent to
the proxy in plain text.

• SOCKS 4 can use the ‘Username’ field, but does not support passwords.
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• SSH proxying can use all the same forms of SSH authentication supported by PuTTY for its
main connection. If the SSH server requests password authentication, any configured proxy
password will be used, but other authentication methods such as public keys and GSSAPI
will be tried first, just as for a primary SSH connection, and if they require credentials such
as a key passphrase, PuTTY will interactively prompt for these.

• You can specify a way to include a username and password in the Telnet/Local proxy
command (see section 4.16.5). If you do so, and don't also specify the actual username
and/or password in the configuration, PuTTY will interactively prompt for them.

4.16.5 Specifying the Telnet, SSH, or Local proxy command

If you are using the Telnet proxy type, the usual command required by the firewall's Telnet
server isconnect , followed by a host name and a port number. If your proxy needs a different
command, you can enter an alternative in the ‘Command to send to proxy’ box.

If you are using the Local proxy type, the local command to run is specified here.

If you are using the ‘SSH to proxy and execute a command’ type, the command to run on the
SSH proxy server is specified here. Similarly, if you are using ‘SSH to proxy and invoke a
subsystem’, the subsystem name is constructed as specified here.

In this string, you can use\n to represent a new-line,\r to represent a carriage return,\t to
represent a tab character, and\x followed by two hex digits to represent any other character.
\\ is used to encode the\ character itself.

Also, the special strings%host and %port will be replaced by the host name and port
number you want to connect to. For Telnet and Local proxy types, the strings%user and
%pass will be replaced by the proxy username and password (which, if not specified in the
configuration, will be prompted for) – this does not happen with SSH proxy types (because the
proxy username/password are used for SSH authentication). The strings%proxyhost and
%proxyport will be replaced by the host details specified on theProxypanel, if any (this is
most likely to be useful for proxy types using a local or remote command). To get a literal%
sign, enter%%.

If a Telnet proxy server prompts for a username and password before commands can be sent,
you can use a command such as:

%user\n%pass\nconnect %host %port\n

This will send your username and password as the first two lines to the proxy, followed by a
command to connect to the desired host and port. Note that if you do not include the%user or
%pass tokens in the Telnet command, then anything specified in ‘Username’ and ‘Password’
configuration fields will be ignored.

4.16.6 Controlling proxy logging

Often the proxy interaction has its own diagnostic output; this is particularly the case for local
proxy commands.

The setting ‘Print proxy diagnostics in the terminal window’ lets you control how much of the
proxy's diagnostics are printed to the main terminal window, along with output from your main
session.

By default (‘No’), proxy diagnostics are only sent to the Event Log; with ‘Yes’ they are also
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printed to the terminal, where they may get mixed up with your main session. ‘Only until session
starts’ is a compromise; proxy messages will go to the terminal window until the main session
is deemed to have started (in a protocol-dependent way), which is when they're most likely to
be interesting; any further proxy-related messages during the session will only go to the Event
Log.

4.17 The SSH panel
The SSH panel allows you to configure options that only apply to SSH sessions.

4.17.1 Executing a specific command on the server

In SSH, you don't have to run a general shell session on the server. Instead, you can choose to
run a single specific command (such as a mail user agent, for example). If you want to do this,
enter the command in the ‘Remote command’ box.

Note that most servers will close the session after executing the command.

4.17.2 ‘Don't start a shell or command at all’

If you tick this box, PuTTY will not attempt to run a shell or command after connecting to the
remote server. You might want to use this option if you are only using the SSH connection for
port forwarding, and your user account on the server does not have the ability to run a shell.

This feature is only available in SSH protocol version 2 (since the version 1 protocol assumes
you will always want to run a shell).

This feature can also be enabled using the-N command-line option; see section 3.11.3.13.

If you use this feature in Plink, you will not be able to terminate the Plink process by any graceful
means; the only way to kill it will be by pressing Control-C or sending a kill signal from another
program.

4.17.3 ‘Enable compression’

This enables data compression in the SSH connection: data sent by the server is compressed
before sending, and decompressed at the client end. Likewise, data sent by PuTTY to the server
is compressed first and the server decompresses it at the other end. This can help make the most
of a low-bandwidth connection.

4.17.4 ‘SSH protocol version’

This allows you to select whether to use SSH protocol version 2 or the older version 1.

You should normally leave this at the default of ‘2’. As well as having fewer features, the older
SSH-1 protocol is no longer developed, has many known cryptographic weaknesses, and is
generally not considered to be secure. PuTTY's protocol 1 implementation is provided mainly
for compatibility, and is no longer being enhanced.

If a server offers both versions, prefer ‘2’. If you have some server or piece of equipment that
only talks SSH-1, select ‘1’ here, and do not treat the resulting connection as secure.

PuTTY will not automatically fall back to the other version of the protocol if the server turns out
not to match your selection here; instead, it will put up an error message and abort the connection.
This prevents an active attacker downgrading an intended SSH-2 connection to SSH-1.
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4.17.5 Sharing an SSH connection between PuTTY tools

The controls in this box allow you to configure PuTTY to reuse an existing SSH connection,
where possible.

The SSH-2 protocol permits you to run multiple data channels over the same SSH connection,
so that you can log in just once (and do the expensive encryption setup just once) and then have
more than one terminal window open.

Each instance of PuTTY can still run at most one terminal session, but using the controls in
this box, you can configure PuTTY to check if another instance of itself has already connected
to the target host, and if so, share that instance's SSH connection instead of starting a separate
new one.

To enable this feature, just tick the box ‘Share SSH connections if possible’. Then, whenever
you start up a PuTTY session connecting to a particular host, it will try to reuse an existing
SSH connection if one is available. For example, selecting ‘Duplicate Session’ from the system
menu will launch another session on the same host, and if sharing is enabled then it will reuse
the existing SSH connection.

When this mode is in use, the first PuTTY that connected to a given server becomes the
‘upstream’, which means that it is the one managing the real SSH connection. All subsequent
PuTTYs which reuse the connection are referred to as ‘downstreams’: they do not connect
to the real server at all, but instead connect to the upstream PuTTY via local inter-process
communication methods.

For this system to be activated,both the upstream and downstream instances of PuTTY must
have the sharing option enabled.

The upstream PuTTY can therefore not terminate until all its downstreams have closed. This is
similar to the effect you get with port forwarding or X11 forwarding, in which a PuTTY whose
terminal session has already finished will still remain open so as to keep serving forwarded
connections.

In case you need to configure this system in more detail, there are two additional checkboxes
which allow you to specify whether a particular PuTTY can act as an upstream or a downstream
or both. (These boxes only take effect if the main ‘Share SSH connections if possible’ box is also
ticked.) By default both of these boxes are ticked, so that multiple PuTTYs started from the same
configuration will designate one of themselves as the upstream and share a single connection;
but if for some reason you need a particular PuTTY configurationnot to be an upstream (e.g.
because you definitely need it to close promptly) or not to be a downstream (e.g. because it needs
to do its own authentication using a special private key) then you can untick one or the other of
these boxes.

I have referred to ‘PuTTY’ throughout the above discussion, but all the other PuTTY tools which
make SSH connections can use this mechanism too. For example, if PSCP or PSFTP loads a
configuration with sharing enabled, then it can act as a downstream and use an existing SSH
connection set up by an instance of GUI PuTTY. The one special case is that PSCP and PSFTP
will neveract as upstreams.

It is possible to test programmatically for the existence of a live upstream using Plink. See section
7.2.3.4.
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4.18 The Kex panel
The Kex panel (short for ‘key exchange’) allows you to configure options related to SSH-2 key
exchange.

Key exchange occurs at the start of an SSH connection (and occasionally thereafter); it
establishes a shared secret that is used as the basis for all of SSH's security features. It is therefore
very important for the security of the connection that the key exchange is secure.

Key exchange is a cryptographically intensive process; if either the client or the server is a
relatively slow machine, the slower methods may take several tens of seconds to complete.

If connection startup is too slow, or the connection hangs periodically, you may want to try
changing these settings.

If you don't understand what any of this means, it's safe to leave these settings alone.

This entire panel is only relevant to SSH protocol version 2; none of these settings affect SSH-
1 at all.

4.18.1 Key exchange algorithm selection

PuTTY supports a variety of SSH-2 key exchange methods, and allows you to choose which
one you prefer to use; configuration is similar to cipher selection (see section 4.20).

PuTTY currently supports the following key exchange methods:

• ‘NTRU Prime / Curve25519 hybrid’: ‘Streamlined NTRU Prime’ is a lattice-based
algorithm intended to resist quantum attacks. In this key exchange method, it is run in
parallel with a conventional Curve25519-based method (one of those included in ‘ECDH’),
in such a way that it should be nolesssecure than that commonly-used method, and
hopefully also resistant to a new class of attacks.

• ‘ECDH’: elliptic curve Diffie-Hellman key exchange, with a variety of standard curves and
hash algorithms.

• The original form of Diffie-Hellman key exchange, with a variety of well-known groups
and hashes:

• ‘Group 18’, a well-known 8192-bit group, used with the SHA-512 hash function.

• ‘Group 17’, a well-known 6144-bit group, used with the SHA-512 hash function.

• ‘Group 16’, a well-known 4096-bit group, used with the SHA-512 hash function.

• ‘Group 15’, a well-known 3072-bit group, used with the SHA-512 hash function.

• ‘Group 14’: a well-known 2048-bit group, used with the SHA-256 hash function or,
if the server doesn't support that, SHA-1.

• ‘Group 1’: a well-known 1024-bit group, used with the SHA-1 hash function. Neither
we nor current SSH standards recommend using this method any longer, and it's not
used by default in new installations; however, it may be the only method supported
by very old server software.

• ‘Diffie-Hellman group exchange’: with this method, instead of using a fixed group, PuTTY

79



requests that the server suggest a group to use for a subsequent Diffie-Hellman key
exchange; the server can avoid groups known to be weak, and possibly invent new ones over
time, without any changes required to PuTTY's configuration. This key exchange method
uses the SHA-256 hash or, if the server doesn't support that, SHA-1.

• ‘RSA-based key exchange’: this requires much less computational effort on the part of the
client, and somewhat less on the part of the server, than Diffie-Hellman key exchange.

• ‘GSSAPI key exchange’: see section 4.18.1.1.

If the first algorithm PuTTY finds is below the ‘warn below here’ line, you will see a warning
box when you make the connection, similar to that for cipher selection (see section 4.20).

4.18.1.1 GSSAPI-based key exchange

PuTTY supports a set of key exchange methods that also incorporates GSSAPI-based
authentication. They are enabled with the ‘Attempt GSSAPI key exchange’ checkbox (which
also appears on the ‘GSSAPI’ panel).

PuTTY can only perform the GSSAPI-authenticated key exchange methods when using
Kerberos V5, and not other GSSAPI mechanisms. If the user running PuTTY has current
Kerberos V5 credentials, then PuTTY will select the GSSAPI key exchange methods in
preference to any of the ordinary SSH key exchange methods configured in the preference list.
There's a GSSAPI-based equivalent to most of the ordinary methods listed in section 4.18.1;
server support determines which one will be used. (PuTTY's preference order for GSSAPI-
authenticated key exchange methods is fixed, not controlled by the preference list.)

The advantage of doing GSSAPI authentication as part of the SSH key exchange is apparent
when you are using credential delegation (see section 4.23.1). The SSH key exchange can be
repeated later in the session, and this allows your Kerberos V5 credentials (which are typically
short-lived) to be automatically re-delegated to the server when they are refreshed on the client.
(This feature is commonly referred to as ‘cascading credentials’.)

If your server doesn't support GSSAPI key exchange, it may still support GSSAPI in the SSH
user authentication phase. This will still let you log in using your Kerberos credentials, but will
only allow you to delegate the credentials that are active at the beginning of the session; they
can't be refreshed automatically later, in a long-running session. See section 4.23 for how to
control GSSAPI user authentication in PuTTY.

Another effect of GSSAPI key exchange is that it replaces the usual SSH mechanism of
permanent host keys described in section 2.2. So if you use this method, then you won't be asked
any interactive questions about whether to accept the server's host key. Instead, the Kerberos
exchange will verify the identity of the host you connect to, at the same time as verifying your
identity to it.

4.18.2 Repeat key exchange

If the session key negotiated at connection startup is used too much or for too long, it may
become feasible to mount attacks against the SSH connection. Therefore, the SSH-2 protocol
specifies that a new key exchange should take place every so often; this can be initiated by either
the client or the server.

While this renegotiation is taking place, no data can pass through the SSH connection, so it
may appear to ‘freeze’. (The occurrence of repeat key exchange is noted in the Event Log; see
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section 3.1.3.1.) Usually the same algorithm is used as at the start of the connection, with a
similar overhead.

These options control how often PuTTY will initiate a repeat key exchange (‘rekey’). You can
also force a key exchange at any time from the Special Commands menu (see section 3.1.3.2).

• ‘Max minutes before rekey’ specifies the amount of time that is allowed to elapse before
a rekey is initiated. If this is set to zero, PuTTY will not rekey due to elapsed time. The
SSH-2 protocol specification recommends a timeout of at most 60 minutes.

You might have a need to disable time-based rekeys completely for the same reasons that
keepalives aren't always helpful. If you anticipate suffering a network dropout of several
hours in the middle of an SSH connection, but were not actually planning to senddatadown
that connection during those hours, then an attempted rekey in the middle of the dropout
will probably cause the connection to be abandoned, whereas if rekeys are disabled then the
connection should in principle survive (in the absence of interfering firewalls). See section 4.14.1
for more discussion of these issues; for these purposes, rekeys have much the same properties
as keepalives. (Except that rekeys have cryptographic value in themselves, so you should bear
that in mind when deciding whether to turn them off.) Note, however, the the SSHservercan
still initiate rekeys.

• ‘Minutes between GSSAPI checks’, if you're using GSSAPI key exchange, specifies how
often the GSSAPI credential cache is checked to see whether new tickets are available
for delegation, or current ones are near expiration. If forwarding of GSSAPI credentials
is enabled, PuTTY will try to rekey as necessary to keep the delegated credentials from
expiring. Frequent checks are recommended; rekeying only happens when needed.

• ‘Max data before rekey’ specifies the amount of data (in bytes) that is permitted to flow
in either direction before a rekey is initiated. If this is set to zero, PuTTY will not rekey
due to transferred data. The SSH-2 protocol specification recommends a limit of at most
1 gigabyte.

As well as specifying a value in bytes, the following shorthand can be used:

• ‘1k ’ specifies 1 kilobyte (1024 bytes).

• ‘1M’ specifies 1 megabyte (1024 kilobytes).

• ‘1G’ specifies 1 gigabyte (1024 megabytes).

Disabling data-based rekeys entirely is a bad idea. The integrity, and to a lesser extent,
confidentiality of the SSH-2 protocol depend in part on rekeys occurring before a 32-bit packet
sequence number wraps around. Unlike time-based rekeys, data-based rekeys won't occur when
the SSH connection is idle, so they shouldn't cause the same problems. The SSH-1 protocol,
incidentally, has even weaker integrity protection than SSH-2 without rekeys.

4.19 The Host Keys panel
The Host Keys panel allows you to configure options related to host key management.

Host keys are used to prove the server's identity, and assure you that the server is not being
spoofed (either by a man-in-the-middle attack or by completely replacing it on the network).
See section 2.2 for a basic introduction to host keys.

Much of this panel is only relevant to SSH protocol version 2; SSH-1 only supports one type of
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host key.

4.19.1 Host key type selection

PuTTY supports a variety of SSH-2 host key types, and allows you to choose which one you
prefer to use to identify the server. Configuration is similar to cipher selection (see section 4.20).

PuTTY currently supports the following host key types:

• ‘Ed25519’: Edwards-curve DSA using a twisted Edwards curve with modulus2^255-
19 .

• ‘Ed448’: another Edwards-curve DSA type, using a larger elliptic curve with a 448-bit
instead of 255-bit modulus (so it has a higher security level than Ed25519).

• ‘ECDSA’: elliptic curve DSA using one of the NIST-standardised elliptic curves.

• ‘DSA’: straightforward DSA using modular exponentiation.

• ‘RSA’: the ordinary RSA algorithm.

If PuTTY already has one or more host keys stored for the server, it will by default prefer to use
one of those, even if the server has a key type that is higher in the preference order. You can add
such a key to PuTTY's cache from within an existing session using the ‘Special Commands’
menu; see section 3.1.3.2.

Otherwise, PuTTY will choose a key type based purely on the preference order you specify in
the configuration.

If the first key type PuTTY finds is below the ‘warn below here’ line, you will see a warning
box when you make the connection, similar to that for cipher selection (see section 4.20).

4.19.2 Preferring known host keys

By default, PuTTY will adjust the preference order for SSH-2 host key algorithms so that any
host keys it already knows are moved to the top of the list.

This prevents you from having to check and confirm a new host key for a server you already had
one for (e.g. because the server has generated an alternative key of a type higher in PuTTY's
preference order, or because you changed the preference order itself).

However, on the other hand, it can leak information to a listener in the network aboutwhether
you already know a host key for this server.

For this reason, this policy is configurable. By turning this checkbox off, you can reset PuTTY
to always use the exact order of host key algorithms configured in the preference list described
in section 4.19.1, so that a listener will find out nothing about what keys you had stored.

4.19.3 Manually configuring host keys

In some situations, if PuTTY's automated host key management is not doing what you need,
you might need to manually configure PuTTY to accept a specific host key, or one of a specific
set of host keys.

One reason why you might want to do this is because the host name PuTTY is connecting to is
using round-robin DNS to return one of multiple actual servers, and they all have different host
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keys. In that situation, you might need to configure PuTTY to accept any of a list of host keys
for the possible servers, while still rejecting any key not in that list.

Another reason is if PuTTY's automated host key management is completely unavailable, e.g.
because PuTTY (or Plink or PSFTP, etc) is running in a Windows environment without access
to the Registry. In that situation, you will probably want to use the-hostkey command-line
option to configure the expected host key(s); see section 3.11.3.22.

For situations where PuTTY's automated host key management simply picks the wrong host
name to store a key under, you may want to consider setting a ‘logical host name’ instead; see
section 4.14.5.

To configure manual host keys via the GUI, enter some text describing the host key into the edit
box in the ‘Manually configure host keys for this connection’ container, and press the ‘Add’
button. The text will appear in the ‘Host keys or fingerprints to accept’ list box. You can remove
keys again with the ‘Remove’ button.

The text describing a host key can be in one of the following formats:

• An SHA-256-based host key fingerprint of the form displayed in PuTTY's Event Log and
host key dialog boxes, i.e. ‘SHA256: ’ followed by 43 case-sensitive characters.

• An MD5-based host key fingerprint, i.e. sixteen 2-digit hex numbers separated by colons,
optionally preceded by the prefix ‘MD5:’. (The case of the characters does not matter.)

• A base64-encoded blob describing an SSH-2 public key in OpenSSH's one-line
public key format. How you acquire a public key in this format is server-
dependent; on an OpenSSH server it can typically be found in a location like
/etc/ssh/ssh_host_rsa_key.pub .

If this box contains at least one host key or fingerprint when PuTTY makes an SSH connection,
then PuTTY's automated host key management is completely bypassed: the connection will be
permitted if and only if the host key presented by the server is one of the keys listed in this box,
and the host key store in the Registry will be neither readnor written, unless you explicitly do
so.

If the box is empty (as it usually is), then PuTTY's automated host key management will work
as normal.

4.19.4 Configuring PuTTY to accept host certificates

In some environments, the SSH host keys for a lot of servers will all be signed in turn by a
central ‘certification authority’ (‘CA’ for short). This simplifies host key configuration for users,
because if they configure their SSH client to accept host keys certified by that CA, then they
don't need to individually confirm each host key the first time they connect to that server.

In order to do this, press the ‘Configure host CAs’ button in the ‘Host keys’ configuration panel.
This will launch a secondary configuration dialog box where you can configure what CAs
PuTTY will accept signatures from.

Note that this configuration is common to all saved sessions. Everything in the main PuTTY
configuration is specific to one saved session, and you can prepare a separate session with all the
configuration different. But there's only one copy of the host CA configuration, and it applies
to all sessions PuTTY runs, whether saved or not.
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(Otherwise, it would be useless – configuring a CA by hand for each new host wouldn't be any
more convenient than pressing the ‘confirm’ button for each new host's host key.)

To set up a new CA using this config box:

First, load the CA's public key from a file, or paste it directly into the ‘Public key of certification
authority’ edit box. If your organisation signs its host keys in this way, they will publish the
public key of their CA so that SSH users can include it in their configuration.

Next, in the ‘Valid hosts this key is trusted to certify’ box, configure at least one hostname
wildcard to say what servers PuTTY should trust this CA to speak for. For example, suppose you
work for Example Corporation (example.com ), and the Example Corporation IT department
has advertised a CA that signs all the Example internal machines' host keys. Then probably you
want to trust that CA to sign host keys for machines in the domainexample.com , but not for
anything else. So you might enter ‘*.example.com ’ into the ‘Valid hosts’ box.

It's important to limit what the CA key is allowed to sign . Don't just enter ‘* ’ in that box!
If you do that, you're saying that Example Corporation IT department is authorised to sign a
host key foranything at allyou might decide to connect to – even if you're connecting out of
the company network to a machine somewhere else, such as your own personal server. So that
configuration would enable the Example IT department to act as a ‘man-in-the-middle’ between
your PuTTY process and your server, and listen in to your communications – exactly the thing
SSH is supposed to avoid.

So, if the CA was provided to you by the sysadmins responsible forexample.com (or
whatever), make sure PuTTY willonly trust it for machines in theexample.com domain.

For the full syntax of the ‘Valid hosts’ expression, see section 4.19.4.1.

Finally, choose an identifying name for this CA; enter that name in the ‘Name for this CA’ edit
box at the top of the window, and press ‘Save’ to record the CA in your configuration. The name
you chose will appear in the list of saved CAs to the left of the ‘Save’ button.

The identifying name can be anything you like. It's there so that if you store multiple certificates
you can tell which is which later when you want to edit or delete them. It also appears in the
PuTTY Event Log when a server presents a certificate signed by that CA.

To reload an existing CA configuration, select it in the list box and press ‘Load’. Then you can
make changes, and save it again.

To remove a CA from your configuration completely, select it in the list and press ‘Delete’.

4.19.4.1 Expressions you can enter in ‘Valid hosts’

The simplest thing you can enter in the ‘Valid hosts this key is trusted to certify’ edit box is just
a hostname wildcard such as ‘*.example.com ’. This matches any host in any subdomain,
so both ‘ssh.example.com ’ and ‘login.dept.example.com ’ would match, but
‘prod.example.net ’ would not.

But you can also enter multiple host name wildcards, and port number ranges, and make
complicated Boolean expressions out of them using the operators ‘&&’ for ‘and’, ‘ || ’ for ‘or’,
‘ ! ’ for ‘not’, and parentheses.

For example, here are some other things you could enter.
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• ‘*.foo.example.com || *.bar.example.com ’. This means the CA is trusted
to sign the host key for a connection if the host name matches ‘*.foo.example.com’
or it matches ‘*.bar.example.com’. In other words, the CA has authority over
those two particular subdomains ofexample.com , but not for anything else, like
www.example.com .

• ‘*.example.com && ! *.extrasecure.example.com ’. This means the CA
is trusted to sign the host key for a connection if the host name matches ‘*.example.com’
but does notmatch ‘*.extrasecure.example.com’. (Imagine if there was one top-secret set
of servers in your company that the main IT department didn't have security clearance to
administer.)

• ‘*.example.com && port:22 ’. This means the CA is trusted to sign the host key
for a connection if the host name matches ‘*.example.com’andthe port number is 22. SSH
servers running on other ports would not be covered.

• ‘ (*.foo.example.com || *.bar.example.com) && port:0-1023 ’.
This matches two subdomains ofexample.com , as before, butalso restricts the port
number to the range 0-1023.

A certificate configuration expression consists of one or more individual requirements which can
each be a hostname wildcard, a single port number, or a port number range, combined together
with these Boolean operators.

Unlike other languages such as C, there is no implied priority between ‘&&’ and ‘|| ’. If you
write ‘A && B || C ’ (whereA, B andCare some particular requirements), then PuTTY will
report a syntax error, because you haven't said which of the ‘&&’ and ‘|| ’ takes priority tightly.
You will have to write either ‘(A && B) || C ’, meaning ‘both ofA andB, or alternatively
justC’, or ‘A && (B || C) ’ (‘ A, and also at least one ofB andC’), to make it clear.

4.19.4.2 RSA signature types in certificates

RSA keys can be used to generate signatures with a choice of secure hash function. Typically,
any version of OpenSSH new enough to support certificates at all will also be new enough to
avoid using SHA-1, so the default settings of accepting the more modern SHA-256 and SHA-
512 should be suitable for nearly all cases. For completeness, however, you can configure which
types of RSA signature PuTTY will accept in a certificate from a CA using an RSA key.

4.20 The Cipher panel
PuTTY supports a variety of different encryption algorithms, and allows you to choose which
one you prefer to use. You can do this by dragging the algorithms up and down in the list box (or
moving them using the Up and Down buttons) to specify a preference order. When you make
an SSH connection, PuTTY will search down the list from the top until it finds an algorithm
supported by the server, and then use that.

PuTTY currently supports the following algorithms:

• ChaCha20-Poly1305, a combined cipher and MAC (SSH-2 only)

• AES (Rijndael) - 256, 192, or 128-bit SDCTR or CBC, or 256 or 128-bit GCM (SSH-2
only)

• Arcfour (RC4) - 256 or 128-bit stream cipher (SSH-2 only)
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• Blowfish - 256-bit SDCTR (SSH-2 only) or 128-bit CBC

• Triple-DES - 168-bit SDCTR (SSH-2 only) or CBC

• Single-DES - 56-bit CBC (see below for SSH-2)

If the algorithm PuTTY finds is below the ‘warn below here’ line, you will see a warning box
when you make the connection:

The first cipher supported by the server
is single-DES, which is below the configured
warning threshold.
Do you want to continue with this connection?

This warns you that the first available encryption is not a very secure one. Typically you would
put the ‘warn below here’ line between the encryptions you consider secure and the ones you
consider substandard. By default, PuTTY supplies a preference order intended to reflect a
reasonable preference in terms of security and speed.

In SSH-2, the encryption algorithm is negotiated independently for each direction of the
connection, although PuTTY does not support separate configuration of the preference orders.
As a result you may get two warnings similar to the one above, possibly with different
encryptions.

Single-DES is not recommended in the SSH-2 protocol standards, but one or two server
implementations do support it. PuTTY can use single-DES to interoperate with these servers if
you enable the ‘Enable legacy use of single-DES in SSH-2’ option; by default this is disabled
and PuTTY will stick to recommended ciphers.

4.21 The Auth panel
The Auth panel allows you to configure authentication options for SSH sessions.

4.21.1 ‘Display pre-authentication banner’

SSH-2 servers can provide a message for clients to display to the prospective user before the
user logs in; this is sometimes known as a pre-authentication ‘banner’. Typically this is used to
provide information about the server and legal notices.

By default, PuTTY displays this message before prompting for a password or similar credentials
(although, unfortunately, not before prompting for a login name, due to the nature of the protocol
design). By unchecking this option, display of the banner can be suppressed entirely.

4.21.2 ‘Bypass authentication entirely’

In SSH-2, it is in principle possible to establish a connection without using SSH's mechanisms to
identify or prove who you are to the server. An SSH server could prefer to handle authentication
in the data channel, for instance, or simply require no user authentication whatsoever.

By default, PuTTY assumes the server requires authentication (we've never heard of one that
doesn't), and thus must start this process with a username. If you find you are getting username
prompts that you cannot answer, you could try enabling this option. However, most SSH servers
will reject this.

This is not the option you want if you have a username and just want PuTTY to remember it;
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for that see section 4.15.1. It's also probably not what if you're trying to set up passwordless
login to a mainstream SSH server; depending on the server, you probably wanted public-key
authentication (chapter 8) or perhaps GSSAPI authentication (section 4.23). (These are still
forms of authentication, even if you don't have to interact with them.)

This option only affects SSH-2 connections. SSH-1 connections always require an
authentication step.

4.21.3 ‘Disconnect if authentication succeeds trivially’

This option causes PuTTY to abandon an SSH session and disconnect from the server, if the
server accepted authentication without ever having asked for any kind of password or signature
or token.

This might be used as a security measure. There are some forms of attack against an SSH client
user which work by terminating the SSH authentication stage early, and then doing something
in the main part of the SSH session whichlookslike part of the authentication, but isn't really.

For example, instead of demanding a signature from your public key, for which PuTTY would
ask for your key's passphrase, a compromised or malicious server might allow you to log in with
no signature or password at all, and then print a message thatimitatesPuTTY's request for your
passphrase, in the hope that you would type it in. (In fact, the passphrase for your public key
should not be sent to any server.)

PuTTY's main defence against attacks of this type is the ‘trust sigil’ system: messages in the
PuTTY window that are truly originated by PuTTY itself are shown next to a small copy of
the PuTTY icon, which the server cannot fake when it tries to imitate the same message using
terminal output.

However, if you think you might be at risk of this kind of thing anyway (if you don't watch closely
for the trust sigils, or if you think you're at extra risk of one of your servers being malicious), then
you could enable this option as an extra defence. Then, if the server tries any of these attacks
involving letting you through the authentication stage, PuTTY will disconnect from the server
before it can send a follow-up fake prompt or other type of attack.

On the other hand, some serverslegitimately let you through the SSH authentication phase
trivially, either because they are genuinely public, or because the important authentication step
happens during the terminal session. (An example might be an SSH server that connects you
directly to the terminal login prompt of a legacy mainframe.) So enabling this option might
cause some kinds of session to stop working. It's up to you.

4.21.4 ‘Attempt authentication using Pageant’

If this option is enabled, then PuTTY will look for Pageant (the SSH private-key storage agent)
and attempt to authenticate with any suitable public keys Pageant currently holds.

This behaviour is almost always desirable, and is therefore enabled by default. In rare cases you
might need to turn it off in order to force authentication by some non-public-key method such
as passwords.

This option can also be controlled using the-noagent command-line option. See section
3.11.3.9.

See chapter 9 for more information about Pageant in general.
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4.21.5 ‘Attempt TIS or CryptoCard authentication’

TIS and CryptoCard authentication are (despite their names) generic forms of simple
challenge/response authentication available in SSH protocol version 1 only. You might use them
if you were using S/Key one-time passwords, for example, or if you had a physical security
token that generated responses to authentication challenges. They can even be used to prompt
for simple passwords.

With this switch enabled, PuTTY will attempt these forms of authentication if the server is
willing to try them. You will be presented with a challenge string (which may be different
every time) and must supply the correct response in order to log in. If your server supports this,
you should talk to your system administrator about precisely what form these challenges and
responses take.

4.21.6 ‘Attempt keyboard-interactive authentication’

The SSH-2 equivalent of TIS authentication is called ‘keyboard-interactive’. It is a flexible
authentication method using an arbitrary sequence of requests and responses; so it is not only
useful for challenge/response mechanisms such as S/Key, but it can also be used for (for
example) asking the user for a new password when the old one has expired.

PuTTY leaves this option enabled by default, but supplies a switch to turn it off in case you
should have trouble with it.

4.21.7 ‘Allow agent forwarding’

This option allows the SSH server to open forwarded connections back to your local copy of
Pageant. If you are not running Pageant, this option will do nothing.

See chapter 9 for general information on Pageant, and section 9.4 for information on agent
forwarding. Note that there is a security risk involved with enabling this option; see section 9.6
for details.

4.21.8 ‘Allow attempted changes of username in SSH-2’

In the SSH-1 protocol, it is impossible to change username after failing to authenticate. So if
you mis-type your username at the PuTTY ‘login as:’ prompt, you will not be able to change it
except by restarting PuTTY.

The SSH-2 protocoldoesallow changes of username, in principle, but does not make it
mandatory for SSH-2 servers to accept them. In particular, OpenSSH does not accept a change
of username; once you have sent one username, it will reject attempts to try to authenticate as
another user. (Depending on the version of OpenSSH, it may quietly return failure for all login
attempts, or it may send an error message.)

For this reason, PuTTY will by default not prompt you for your username more than once, in
case the server complains. If you know your server can cope with it, you can enable the ‘Allow
attempted changes of username’ option to modify PuTTY's behaviour.

4.22 The Credentials panel
This subpane of the Auth panel contains configuration options that specify actualcredentialsto
present to the server: key files and certificates.
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4.22.1 ‘Private key file for authentication’

This box is where you enter the name of your private key file if you are using public key
authentication. See chapter 8 for information about public key authentication in SSH.

This key must be in PuTTY's native format (*.PPK ). If you have a private key in another format
that you want to use with PuTTY, see section 8.2.15.

You can use the authentication agent Pageant so that you do not need to explicitly configure a
key here; see chapter 9.

If a private key file is specified here with Pageant running, PuTTY will first try asking Pageant
to authenticate with that key, and ignore any other keys Pageant may have. If that fails, PuTTY
will ask for a passphrase as normal. You can also specify apublickey file in this case (in RFC
4716 or OpenSSH format), as that's sufficient to identify the key to Pageant, but of course if
Pageant isn't present PuTTY can't fall back to using this file itself.

4.22.2 ‘Certificate to use with the private key’

In some environments, user authentication keys can be signed in turn by a ‘certifying authority’
(‘CA’ for short), and user accounts on an SSH server can be configured to automatically trust
any key that's certified by the right signature.

This can be a convenient setup if you have a very large number of servers. When you change
your key pair, you might otherwise have to edit theauthorized_keys file on every server
individually, to make them all accept the new key. But if instead you configure all those servers
onceto accept keys signed as yours by a CA, then when you change your public key, all you
have to do is to get the new key certified by the same CA as before, and then all your servers
will automatically accept it without needing individual reconfiguration.

One way to use a certificate is to incorporate it into your private key file. Section 8.2.9 explains
how to do that using PuTTYgen. But another approach is to tell PuTTY itself where to find the
public certificate file, and then it will automatically present that certificate when authenticating
with the corresponding private key.

To do this, enter the pathname of the certificate file into the ‘Certificate to use with the private
key’ file selector.

When this setting is configured, PuTTY will honour it no matter whether the private key is found
in a file, or loaded into Pageant.

4.22.3 ‘Plugin to provide authentication responses’

An SSH server can use the ‘keyboard-interactive’ protocol to present a series of arbitrary
questions and answers. Sometimes this is used for ordinary passwords, but sometimes the server
will use the same mechanism for something more complicated, such as a one-time password
system.

Some of these systems can be automated. For this purpose, PuTTY allows you to provide a
separate program to act as a ‘plugin’ which will take over the authentication and send answers
to the questions on your behalf.

If you have been provided with a plugin of this type, you can configure it here, by entering a
full command line in the ‘Plugin command to run’ box.
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(If you want towrite a plugin of this type, see appendix H for the full specification of how the
plugin is expected to behave.)

4.23 The GSSAPI panel
The ‘GSSAPI’ subpanel of the ‘Auth’ panel controls the use of GSSAPI authentication. This is
a mechanism which delegates the authentication exchange to a library elsewhere on the client
machine, which in principle can authenticate in many different ways but in practice is usually
used with the Kerberos single sign-on protocol to implement passwordless login.

GSSAPI authentication is only available in the SSH-2 protocol.

PuTTY supports two forms of GSSAPI-based authentication. In one of them, the SSH key
exchange happens in the normal way, and GSSAPI is only involved in authenticating the user.
The checkbox labelled ‘Attempt GSSAPI authentication’ controls this form.

In the other method, GSSAPI-based authentication is combined with the SSH key exchange
phase. If this succeeds, then the SSH authentication step has nothing left to do. See section
4.18.1.1 for more information about this method. The checkbox labelled ‘Attempt GSSAPI key
exchange’ controls this form. (The same checkbox appears on the ‘Kex’ panel.)

If one or both of these controls is enabled, then GSSAPI authentication will be attempted in one
form or the other, and (typically) if your client machine has valid Kerberos credentials loaded,
then PuTTY should be able to authenticate automatically to servers that support Kerberos logins.

If both of those checkboxes are disabled, PuTTY will not try any form of GSSAPI at all, and
the rest of this panel will be unused.

4.23.1 ‘Allow GSSAPI credential delegation’

GSSAPI credential delegation is a mechanism for passing on your Kerberos (or other) identity
to the session on the SSH server. If you enable this option, then not only will PuTTY be able
to log in automatically to a server that accepts your Kerberos credentials, but also you will be
able to connect out from that server to other Kerberos-supporting services and use the same
credentials just as automatically.

(This option is the Kerberos analogue of SSH agent forwarding; see section 9.4 for some
information on that.)

Note that, like SSH agent forwarding, there is a security implication in the use of this option:
the administrator of the server you connect to, or anyone else who has cracked the administrator
account on that server, could fake your identity when connecting to further Kerberos-supporting
services. However, Kerberos sites are typically run by a central authority, so the administrator
of one server is likely to already have access to the other services too; so this would typically
be less of a risk than SSH agent forwarding.

If your connection is not using GSSAPI key exchange, it is possible for the delegation to expire
during your session. See section 4.18.1.1 for more information.

4.23.2 Preference order for GSSAPI libraries

GSSAPI is a mechanism which allows more than one authentication method to be accessed
through the same interface. Therefore, more than one authentication library may exist on your
system which can be accessed using GSSAPI.
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PuTTY contains native support for a few well-known such libraries (including Windows' SSPI),
and will look for all of them on your system and use whichever it finds. If more than one exists
on your system and you need to use a specific one, you can adjust the order in which it will
search using this preference list control.

One of the options in the preference list is to use a user-specified GSSAPI library. If the
library you want to use is not mentioned by name in PuTTY's list of options, you can enter its
full pathname in the ‘User-supplied GSSAPI library path’ field, and move the ‘User-supplied
GSSAPI library’ option in the preference list to make sure it is selected before anything else.

On Windows, such libraries are files with a.dll extension, and must have been built in the
same way as the PuTTY executable you're running; if you have a 32-bit DLL, you must run
a 32-bit version of PuTTY, and the same with 64-bit (see question A.6.10). On Unix, shared
libraries generally have a.so extension.

4.24 The TTY panel
The TTY panel lets you configure the remote pseudo-terminal.

4.24.1 ‘Don't allocate a pseudo-terminal’

When connecting to a Unix system, most interactive shell sessions are run in apseudo-terminal,
which allows the Unix system to pretend it's talking to a real physical terminal device but allows
the SSH server to catch all the data coming from that fake device and send it back to the client.

Occasionally you might find you have a need to run a sessionnotin a pseudo-terminal. In PuTTY,
this is generally only useful for very specialist purposes; although in Plink (see chapter 7) it is
the usual way of working.

4.24.2 Sending terminal modes

The SSH protocol allows the client to send ‘terminal modes’ for the remote pseudo-terminal.
These usually control the server's expectation of the local terminal's behaviour.

If your server does not have sensible defaults for these modes, you may find that changing them
here helps, although the server is at liberty to ignore your changes. If you don't understand any
of this, it's safe to leave these settings alone.

(None of these settings will have any effect if no pseudo-terminal is requested or allocated.)

You can change what happens for a particular mode by selecting it in the list, choosing one of the
options and specifying the exact value if necessary, and hitting ‘Set’. The effect of the options
is as follows:

• If the ‘Auto’ option is selected, the PuTTY tools will decide whether to specify that mode
to the server, and if so, will send a sensible value.

PuTTY proper will send modes that it has an opinion on (currently only the code for the
Backspace key,ERASE, and whether the character set is UTF-8,IUTF8 ). Plink on Unix
will propagate appropriate modes from the local terminal, if any.

• If ‘Nothing’ is selected, no value for the mode will be specified to the server under any
circumstances.

• If a value is specified, it will be sent to the server under all circumstances. The precise
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syntax of the value box depends on the mode.

By default, all of the available modes are listed as ‘Auto’, which should do the right thing in
most circumstances.

The precise effect of each setting, if any, is up to the server. Their names come from POSIX and
other Unix systems, and they are most likely to have a useful effect on such systems. (These
are the same settings that can usually be changed using thestty command once logged in to
such servers.)

Some notable modes are described below; for fuller explanations, see your server
documentation.

• ERASEis the character that when typed by the user will delete one space to the left. When
set to ‘Auto’ (the default setting), this follows the setting of the local Backspace key in
PuTTY (see section 4.4.1).

This and other special characters are specified using^C notation for Ctrl-C, and so on. Use
^<27> or ^<0x1B> to specify a character numerically, and^~ to get a literal̂ . Other
non-control characters are denoted by themselves. Leaving the box entirely blank indicates
that no character should be assigned to the specified function, although this may not be
supported by all servers.

• QUIT is a special character that usually forcefully ends the current process on the server
(SIGQUIT). On many servers its default setting is Ctrl-backslash (^\ ), which is easy to
accidentally invoke on many keyboards. If this is getting in your way, you may want to
change it to another character or turn it off entirely.

• Boolean modes such asECHOandICANONcan be specified in PuTTY in a variety of ways,
such astrue /false , yes /no , and0/1. (Explicitly specifying a value ofno is different
from not sending the mode at all.)

• The boolean modeIUTF8 signals to the server whether the terminal character set is UTF-
8 or not, for purposes such as basic line editing; if this is set incorrectly, the backspace
key may erase the wrong amount of text, for instance. However, simply setting this is not
usually sufficient for the server to use UTF-8; POSIX servers will generally also require
the locale to be set (by some server-dependent means), although many newer installations
default to UTF-8. Also, since this mode was added to the SSH protocol much later than the
others, many servers (particularly older servers) do not honour this mode sent over SSH;
indeed, a few poorly-written servers object to its mere presence, so you may find you need
to set it to not be sent at all. When set to ‘Auto’, this follows the local configured character
set (see section 4.10.1).

• Terminal speeds are configured elsewhere; see section 4.15.4.

4.25 The X11 panel
The X11 panel allows you to configure forwarding of X11 over an SSH connection.

If your server lets you run X Window System graphical applications, X11 forwarding allows
you to securely give those applications access to a local X display on your PC.

To enable X11 forwarding, check the ‘Enable X11 forwarding’ box. If your X display is
somewhere unusual, you will need to enter its location in the ‘X display location’ box; if this is
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left blank, PuTTY will try to find a sensible default in the environment, or use the primary local
display (:0 ) if that fails.

See section 3.4 for more information about X11 forwarding.

4.25.1 Remote X11 authentication

If you are using X11 forwarding, the virtual X server created on the SSH server machine will
be protected by authorisation data. This data is invented, and checked, by PuTTY.

The usual authorisation method used for this is calledMIT-MAGIC-COOKIE-1 . This is a
simple password-style protocol: the X client sends some cookie data to the server, and the
server checks that it matches the real cookie. The cookie data is sent over an unencrypted X11
connection; so if you allow a client on a third machine to access the virtual X server, then the
cookie will be sent in the clear.

PuTTY offers the alternative protocolXDM-AUTHORIZATION-1. This is a cryptographically
authenticated protocol: the data sent by the X client is different every time, and it depends on the
IP address and port of the client's end of the connection and is also stamped with the current time.
So an eavesdropper who captures anXDM-AUTHORIZATION-1string cannot immediately re-
use it for their own X connection.

PuTTY's support forXDM-AUTHORIZATION-1is a somewhat experimental feature, and may
encounter several problems:

• Some X clients probably do not even supportXDM-AUTHORIZATION-1, so they will not
know what to do with the data PuTTY has provided.

• This authentication mechanism will only work in SSH-2. In SSH-1, the SSH server does not
tell the client the source address of a forwarded connection in a machine-readable format,
so it's impossible to verify theXDM-AUTHORIZATION-1data.

• You may find this feature causes problems with some SSH servers, which will not clean up
XDM-AUTHORIZATION-1data after a session, so that if you then connect to the same
server using a client which only doesMIT-MAGIC-COOKIE-1 and are allocated the same
remote display number, you might find that out-of-date authentication data is still present
on your server and your X connections fail.

PuTTY's default isMIT-MAGIC-COOKIE-1 . If you change it, you should be sure you know
what you're doing.

4.25.2 X authority file for local display

If you are using X11 forwarding, the local X server to which your forwarded connections are
eventually directed may itself require authorisation.

Some Windows X servers do not require this: they do authorisation by simpler means, such as
accepting any connection from the local machine but not from anywhere else. However, if your
X server does require authorisation, then PuTTY needs to know what authorisation is required.

One way in which this data might be made available is for the X server to store it somewhere in
a file which has the same format as the Unix.Xauthority file. If this is how your Windows
X server works, then you can tell PuTTY where to find this file by configuring this option. By
default, PuTTY will not attempt to find any authorisation for your local display.
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4.26 The Tunnels panel
The Tunnels panel allows you to configure tunnelling of arbitrary connection types through an
SSH connection.

Port forwarding allows you to tunnel other types of network connection down an SSH session.
See section 3.5 for a general discussion of port forwarding and how it works.

The port forwarding section in the Tunnels panel shows a list of all the port forwardings that
PuTTY will try to set up when it connects to the server. By default no port forwardings are set
up, so this list is empty.

To add a port forwarding:

• Set one of the ‘Local’ or ‘Remote’ radio buttons, depending on whether you want to forward
a local port to a remote destination (‘Local’) or forward a remote port to a local destination
(‘Remote’). Alternatively, select ‘Dynamic’ if you want PuTTY to provide a local SOCKS
4/4A/5 proxy on a local port (note that this proxy only supports TCP connections; the SSH
protocol does not support forwarding UDP).

• Enter a source port number into the ‘Source port’ box. For local forwardings, PuTTY will
listen on this port of your PC. For remote forwardings, your SSH server will listen on this
port of the remote machine. Note that most servers will not allow you to listen on port
numbers less than 1024.

• If you have selected ‘Local’ or ‘Remote’ (this step is not needed with ‘Dynamic’), enter
a hostname and port number separated by a colon, in the ‘Destination’ box. Connections
received on the source port will be directed to this destination. For example, to connect
to a POP-3 server, you might enterpopserver.example.com:110 . (If you need to
enter a literal IPv6 address, enclose it in square brackets, for instance ‘[::1]:2200 ’.)

• Click the ‘Add’ button. Your forwarding details should appear in the list box.

To remove a port forwarding, simply select its details in the list box, and click the ‘Remove’
button.

In the ‘Source port’ box, you can also optionally enter an IP address to listen on, by specifying
(for instance)127.0.0.5:79 . See section 3.5 for more information on how this works and
its restrictions.

In place of port numbers, you can enter service names, if they are known to the local system.
For instance, in the ‘Destination’ box, you could enterpopserver.example.com:pop3 .

You can modify the currently active set of port forwardings in mid-session using ‘Change
Settings’ (see section 3.1.3.4). If you delete a local or dynamic port forwarding in mid-session,
PuTTY will stop listening for connections on that port, so it can be re-used by another program.
If you delete a remote port forwarding, note that:

• The SSH-1 protocol contains no mechanism for asking the server to stop listening on a
remote port.

• The SSH-2 protocol does contain such a mechanism, but not all SSH servers support it.
(In particular, OpenSSH does not support it in any version earlier than 3.9.)
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If you ask to delete a remote port forwarding and PuTTY cannot make the server actually
stop listening on the port, it will instead just start refusing incoming connections on that
port. Therefore, although the port cannot be reused by another program, you can at least be
reasonably sure that server-side programs can no longer access the service at your end of the
port forwarding.

If you delete a forwarding, any existing connections established using that forwarding remain
open. Similarly, changes to global settings such as ‘Local ports accept connections from other
hosts’ only take effect on new forwardings.

If the connection you are forwarding over SSH is itself a second SSH connection made by
another copy of PuTTY, you might find the ‘logical host name’ configuration option useful to
warn PuTTY of which host key it should be expecting. See section 4.14.5 for details of this.

4.26.1 Controlling the visibility of forwarded ports

The source port for a forwarded connection usually does not accept connections from any
machine except the SSH client or server machine itself (for local and remote forwardings
respectively). There are controls in the Tunnels panel to change this:

• The ‘Local ports accept connections from other hosts’ option allows you to set up local-to-
remote port forwardings in such a way that machines other than your client PC can connect
to the forwarded port. (This also applies to dynamic SOCKS forwarding.)

• The ‘Remote ports do the same’ option does the same thing for remote-to-local port
forwardings (so that machines other than the SSH server machine can connect to the
forwarded port.) Note that this feature is only available in the SSH-2 protocol, and not all
SSH-2 servers support it (OpenSSH 3.0 does not, for example).

4.26.2 Selecting Internet protocol version for forwarded ports

This switch allows you to select a specific Internet protocol (IPv4 or IPv6) for the local end of
a forwarded port. By default, it is set on ‘Auto’, which means that:

• for a local-to-remote port forwarding, PuTTY will listen for incoming connections in both
IPv4 and (if available) IPv6

• for a remote-to-local port forwarding, PuTTY will choose a sensible protocol for the
outgoing connection.

This overrides the general Internet protocol version preference on the Connection panel (see
section 4.14.4).

Note that some operating systems may listen for incoming connections in IPv4 even if you
specifically asked for IPv6, because their IPv4 and IPv6 protocol stacks are linked together.
Apparently Linux does this, and Windows does not. So if you're running PuTTY on Windows
and you tick ‘IPv6’ for a local or dynamic port forwarding, it willonlybe usable by connecting
to it using IPv6; whereas if you do the same on Linux, you can also use it with IPv4. However,
ticking ‘Auto’ should always give you a port which you can connect to using either protocol.

4.27 The Bugs and More Bugs panels
Not all SSH servers work properly. Various existing servers have bugs in them, which can make
it impossible for a client to talk to them unless it knows about the bug and works around it.
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Since most servers announce their software version number at the beginning of the SSH
connection, PuTTY will attempt to detect which bugs it can expect to see in the server and
automatically enable workarounds. However, sometimes it will make mistakes; if the server has
been deliberately configured to conceal its version number, or if the server is a version which
PuTTY's bug database does not know about, then PuTTY will not know what bugs to expect.

The Bugs and More Bugs panels (there are two because we have so many bug compatibility
modes) allow you to manually configure the bugs PuTTY expects to see in the server. Each bug
can be configured in three states:

• ‘Off’: PuTTY will assume the server does not have the bug.

• ‘On’: PuTTY will assume the serverdoeshave the bug.

• ‘Auto’: PuTTY will use the server's version number announcement to try to guess whether
or not the server has the bug. (This option is not available for bugs thatcannotbe detected
from the server version, e.g. because they must be acted on before the server version is
known.)

4.27.1 ‘Chokes on SSH-2 ignore messages’

An ignore message (SSH_MSG_IGNORE) is a message in the SSH protocol which can be sent
from the client to the server, or from the server to the client, at any time. Either side is required
to ignore the message whenever it receives it. PuTTY uses ignore messages in SSH-2 to confuse
the encrypted data stream and make it harder to cryptanalyse. It also uses ignore messages for
connection keepalives (see section 4.14.1).

If it believes the server to have this bug, PuTTY will stop using ignore messages. If this bug is
enabled when talking to a correct server, the session will succeed, but keepalives will not work
and the session might be less cryptographically secure than it could be.

4.27.2 ‘Handles SSH-2 key re-exchange badly’

Some SSH servers cannot cope with repeat key exchange at all, and will ignore attempts by the
client to start one. Since PuTTY pauses the session while performing a repeat key exchange,
the effect of this would be to cause the session to hang after an hour (unless you have your
rekey timeout set differently; see section 4.18.2 for more about rekeys). Other, very old, SSH
servers handle repeat key exchange even more badly, and disconnect upon receiving a repeat
key exchange request.

If this bug is detected, PuTTY will never initiate a repeat key exchange. If this bug is enabled
when talking to a correct server, the session should still function, but may be less secure than
you would expect.

This is an SSH-2-specific bug.

4.27.3 ‘Chokes on PuTTY's SSH-2 ‘ winadj ’ requests’

PuTTY sometimes sends a special request to SSH servers in the middle of channel data, with
the namewinadj@putty.projects.tartarus.org (see section G.1). The purpose of
this request is to measure the round-trip time to the server, which PuTTY uses to tune its flow
control. The server does not actually have tounderstandthe message; it is expected to send
back aSSH_MSG_CHANNEL_FAILUREmessage indicating that it didn't understand it. (All
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PuTTY needs for its timing calculations issomekind of response.)

It has been known for some SSH servers to get confused by this message in one way or
another – because it has a long name, or because they can't cope with unrecognised request
names even to the extent of sending back the correct failure response, or because they handle
it sensibly but fill up the server's log file with pointless spam, or whatever. PuTTY therefore
supports this bug-compatibility flag: if it believes the server has this bug, it will never send
its ‘winadj@putty.projects.tartarus.org ’ request, and will make do without its
timing data.

4.27.4 ‘Replies to requests on closed channels’

The SSH protocol as published in RFC 4254 has an ambiguity which arises if one side of a
connection tries to close a channel, while the other side simultaneously sends a request within
the channel and asks for a reply. RFC 4254 leaves it unclear whether the closing side should
reply to the channel request after having announced its intention to close the channel.

Discussion on theietf-ssh mailing list in April 2014 formed a clear consensus that the right
answer is no. However, because of the ambiguity in the specification, some SSH servers have
implemented the other policy; for example, OpenSSH used to until it was fixed.

Because PuTTY sends channel requests with the ‘want reply’ flag throughout channels' lifetime
(see section 4.27.3), it's possible that when connecting to such a server it might receive a reply
to a request after it thinks the channel has entirely closed, and terminate with an error along the
lines of ‘ReceivedSSH2_MSG_CHANNEL_FAILUREfor nonexistent channel 256’.

4.27.5 ‘Ignores SSH-2 maximum packet size’

When an SSH-2 channel is set up, each end announces the maximum size of data packet that
it is willing to receive for that channel. Some servers ignore PuTTY's announcement and send
packets larger than PuTTY is willing to accept, causing it to report ‘Incoming packet was garbled
on decryption’.

If this bug is detected, PuTTY never allows the channel's flow-control window to grow large
enough to allow the server to send an over-sized packet. If this bug is enabled when talking to
a correct server, the session will work correctly, but download performance will be less than it
could be.

4.27.6 ‘Discards data sent before its greeting’

Just occasionally, an SSH connection can be established over some channel that will accidentally
discard outgoing data very early in the connection.

This is not typically seen as a bug in an actual SSH server, but it can sometimes occur in
situations involving a complicated proxy process. An example is Debian bug #991958, in which
a connection going over the console of a User Mode Linux kernel can lose outgoing data before
the kernel has fully booted.

You can work around this problem by manually enabling this bug flag, which will cause PuTTY
to wait to send its initial SSH greeting until after it sees the greeting from the server.

Note that this bug flag can never be automatically detected, since auto-detection relies on the
version string in the server's greeting, and PuTTY has to decide whether to expect this bugbefore
it sees the server's greeting. So this is a manual workaround only.
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4.27.7 ‘Chokes on PuTTY's full KEXINIT ’

At the start of an SSH connection, the client and server exchange long messages of type
SSH_MSG_KEXINIT, containing lists of all the cryptographic algorithms they're prepared to
use. This is used to negotiate a set of algorithms that both ends can speak.

Occasionally, a badly written server might have a length limit on the list it's prepared to receive,
and refuse to make a connection simply because PuTTY is giving it too many choices.

A workaround is to enable this flag, which will make PuTTY wait to sendKEXINIT until after
it receives the one from the server, and then filter its ownKEXINIT to leave out any algorithm
the server doesn't also announce support for. This will generally make PuTTY'sKEXINIT at
most the size of the server's, and will otherwise make no difference to the algorithm negotiation.

This flag is a minor violation of the SSH protocol, because both sides are supposed to send
KEXINIT proactively. It still works providedoneside sends itsKEXINIT without waiting, but
if both client and server waited for the other one to speak first, the connection would deadlock.
We don't know of any servers that do this, but if there is one, then this flag will make PuTTY
unable to speak to them at all.

4.27.8 ‘Requires padding on SSH-2 RSA signatures’

Versions below 3.3 of OpenSSH require SSH-2 RSA signatures to be padded with zero bytes
to the same length as the RSA key modulus. The SSH-2 specification says that an unpadded
signature MUST be accepted, so this is a bug. A typical symptom of this problem is that PuTTY
mysteriously fails RSA authentication once in every few hundred attempts, and falls back to
passwords.

If this bug is detected, PuTTY will pad its signatures in the way OpenSSH expects. If this bug is
enabled when talking to a correct server, it is likely that no damage will be done, since correct
servers usually still accept padded signatures because they're used to talking to OpenSSH.

This is an SSH-2-specific bug.

4.27.9 ‘Only supports pre-RFC4419 SSH-2 DH GEX’

The SSH key exchange method that uses Diffie-Hellman group exchange was redesigned
after its original release, to use a slightly more sophisticated setup message. Almost all SSH
implementations switched over to the new version. (PuTTY was one of the last.) A few old
servers still only support the old one.

If this bug is detected, and the client and server negotiate Diffie-Hellman group exchange, then
PuTTY will send the old message now known asSSH2_MSG_KEX_DH_GEX_REQUEST_OLD
in place of the newSSH2_MSG_KEX_DH_GEX_REQUEST.

This is an SSH-2-specific bug.

4.27.10 ‘Miscomputes SSH-2 HMAC keys’

Versions 2.3.0 and below of the SSH server software fromssh.com compute the keys for their
HMAC message authentication codes incorrectly. A typical symptom of this problem is that
PuTTY dies unexpectedly at the beginning of the session, saying ‘Incorrect MAC received on
packet’.

If this bug is detected, PuTTY will compute its HMAC keys in the same way as the buggy server,
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so that communication will still be possible. If this bug is enabled when talking to a correct
server, communication will fail.

This is an SSH-2-specific bug.

4.27.11 ‘Misuses the session ID in SSH-2 PK auth’

Versions below 2.3 of OpenSSH require SSH-2 public-key authentication to be done slightly
differently: the data to be signed by the client contains the session ID formatted in a different
way. If public-key authentication mysteriously does not work but the Event Log (see section
3.1.3.1) thinks it has successfully sent a signature, it might be worth enabling the workaround
for this bug to see if it helps.

If this bug is detected, PuTTY will sign data in the way OpenSSH expects. If this bug is enabled
when talking to a correct server, SSH-2 public-key authentication will fail.

This is an SSH-2-specific bug.

4.27.12 ‘Miscomputes SSH-2 encryption keys’

Versions below 2.0.11 of the SSH server software fromssh.com compute the keys for
the session encryption incorrectly. This problem can cause various error messages, such as
‘Incoming packet was garbled on decryption’, or possibly even ‘Out of memory’.

If this bug is detected, PuTTY will compute its encryption keys in the same way as the buggy
server, so that communication will still be possible. If this bug is enabled when talking to a
correct server, communication will fail.

This is an SSH-2-specific bug.

4.27.13 ‘Chokes on SSH-1 ignore messages’

An ignore message (SSH_MSG_IGNORE) is a message in the SSH protocol which can be sent
from the client to the server, or from the server to the client, at any time. Either side is required to
ignore the message whenever it receives it. PuTTY uses ignore messages to hide the password
packet in SSH-1, so that a listener cannot tell the length of the user's password; it also uses ignore
messages for connection keepalives (see section 4.14.1).

If this bug is detected, PuTTY will stop using ignore messages. This means that keepalives will
stop working, and PuTTY will have to fall back to a secondary defence against SSH-1 password-
length eavesdropping. See section 4.27.14. If this bug is enabled when talking to a correct server,
the session will succeed, but keepalives will not work and the session might be more vulnerable
to eavesdroppers than it could be.

4.27.14 ‘Refuses all SSH-1 password camouflage’

When talking to an SSH-1 server which cannot deal with ignore messages (see section 4.27.13),
PuTTY will attempt to disguise the length of the user's password by sending additional padding
within the password packet. This is technically a violation of the SSH-1 specification, and so
PuTTY will only do it when it cannot use standards-compliant ignore messages as camouflage.
In this sense, for a server to refuse to accept a padded password packet is not really a bug, but
it does make life inconvenient if the server can also not handle ignore messages.

If this ‘bug’ is detected, PuTTY will assume that neither ignore messages nor padding are
acceptable, and that it thus has no choice but to send the user's password with no form of
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camouflage, so that an eavesdropping user will be easily able to find out the exact length of the
password. If this bug is enabled when talking to a correct server, the session will succeed, but
will be more vulnerable to eavesdroppers than it could be.

This is an SSH-1-specific bug. SSH-2 is secure against this type of attack.

4.27.15 ‘Chokes on SSH-1 RSA authentication’

Some SSH-1 servers cannot deal with RSA authentication messages at all. If Pageant is running
and contains any SSH-1 keys, PuTTY will normally automatically try RSA authentication
before falling back to passwords, so these servers will crash when they see the RSA attempt.

If this bug is detected, PuTTY will go straight to password authentication. If this bug is enabled
when talking to a correct server, the session will succeed, but of course RSA authentication will
be impossible.

This is an SSH-1-specific bug.

4.28 The ‘Bare ssh-connection ’ protocol
In addition to SSH itself, PuTTY also supports a second protocol that is derived from SSH. It's
listed in the PuTTY GUI under the name ‘Baressh-connection ’.

This protocol consists of just the innermost of SSH-2's three layers: it leaves out the
cryptography layer providing network security, and it leaves out the authentication layer where
you provide a username and prove you're allowed to log in as that user.

It is thereforecompletely unsuited to any network connection. Don't try to use it over a
network!

The purpose of this protocol is for various specialist circumstances in which the ‘connection’ is
not over a real network, but is a pipe or IPC channel between different processes running on the
samecomputer. In these contexts, the operating system will already have guaranteed that each
of the two communicating processes is owned by the expected user (so that no authentication
is necessary), and that the communications channel cannot be tapped by a hostile user on the
same machine (so that no cryptography is necessary either). Examples of possible uses involve
communicating with a strongly separated context such as the inside of a container, or a VM, or
a different network namespace.

Explicit support for this protocol is new in PuTTY 0.75. As of 2021-04, the only known server
for the baressh-connection protocol is the Unix program ‘psusan ’ that is also part of
the PuTTY tool suite.

(However, this protocol is also the same one used between instances of PuTTY to implement
connection sharing: see section 4.17.5. In fact, in the Unix version of PuTTY, when a sharing
upstream records ‘Sharing this connection at [pathname]’ in the Event Log, it's possible to
connect another instance of PuTTY directly to that Unix socket, by entering its pathname in the
host name box and selecting ‘Baressh-connection ’ as the protocol!)

Many of the options under the SSH panel also affect this protocol, although options to do with
cryptography and authentication do not, for obvious reasons.

I repeat,DON'T TRY TO USE THIS PROTOCOL FOR NETWORK CONNECTIONS!
That's not what it's for, and it's not at all safe to do it.
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4.29 The Serial panel

The Serial panel allows you to configure options that only apply when PuTTY is connecting to
a local serial line.

4.29.1 Selecting a serial line to connect to

The ‘Serial line to connect to’ box allows you to choose which serial line you want PuTTY to
talk to, if your computer has more than one serial port.

On Windows, the first serial line is calledCOM1, and if there is a second it is calledCOM2, and
so on.

This configuration setting is also visible on the Session panel, where it replaces the ‘Host Name’
box (see section 4.1.1) if the connection type is set to ‘Serial’.

4.29.2 Selecting the speed of your serial line

The ‘Speed’ box allows you to choose the speed (or ‘baud rate’) at which to talk to the serial
line. Typical values might be 9600, 19200, 38400 or 57600. Which one you need will depend
on the device at the other end of the serial cable; consult the manual for that device if you are
in doubt.

This configuration setting is also visible on the Session panel, where it replaces the ‘Port’ box
(see section 4.1.1) if the connection type is set to ‘Serial’.

4.29.3 Selecting the number of data bits

The ‘Data bits’ box allows you to choose how many data bits are transmitted in each byte sent
or received through the serial line. Typical values are 7 or 8.

4.29.4 Selecting the number of stop bits

The ‘Stop bits’ box allows you to choose how many stop bits are used in the serial line protocol.
Typical values are 1, 1.5 or 2.

4.29.5 Selecting the serial parity checking scheme

The ‘Parity’ box allows you to choose what type of parity checking is used on the serial line.
The settings are:

• ‘None’: no parity bit is sent at all.

• ‘Odd’: an extra parity bit is sent alongside each byte, and arranged so that the total number
of 1 bits is odd.

• ‘Even’: an extra parity bit is sent alongside each byte, and arranged so that the total number
of 1 bits is even.

• ‘Mark’: an extra parity bit is sent alongside each byte, and always set to 1.

• ‘Space’: an extra parity bit is sent alongside each byte, and always set to 0.
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4.29.6 Selecting the serial flow control scheme

The ‘Flow control’ box allows you to choose what type of flow control checking is used on the
serial line. The settings are:

• ‘None’: no flow control is done. Data may be lost if either side attempts to send faster than
the serial line permits.

• ‘XON/XOFF’: flow control is done by sending XON and XOFF characters within the data
stream.

• ‘RTS/CTS’: flow control is done using the RTS and CTS wires on the serial line.

• ‘DSR/DTR’: flow control is done using the DSR and DTR wires on the serial line.

4.30 The Telnet panel
The Telnet panel allows you to configure options that only apply to Telnet sessions.

4.30.1 ‘Handling of OLD_ENVIRON ambiguity’

The original Telnet mechanism for passing environment variables was badly specified. At
the time the standard (RFC 1408) was written, BSD telnet implementations were already
supporting the feature, and the intention of the standard was to describe the behaviour the BSD
implementations were already using.

Sadly there was a typing error in the standard when it was issued, and two vital function
codes were specified the wrong way round. BSD implementations did not change, and the
standard was not corrected. Therefore, it's possible you might find either BSD or RFC-compliant
implementations out there. This switch allows you to choose which one PuTTY claims to be.

The problem was solved by issuing a second standard, defining a new Telnet mechanism
called NEW_ENVIRON, which behaved exactly like the originalOLD_ENVIRONbut was
not encumbered by existing implementations. Most Telnet servers now support this, and it's
unambiguous. This feature should only be needed if you have trouble passing environment
variables to quite an old server.

4.30.2 Passive and active Telnet negotiation modes

In a Telnet connection, there are two types of data passed between the client and the server:
actual text, andnegotiationsabout which Telnet extra features to use.

PuTTY can use two different strategies for negotiation:

• In activemode, PuTTY starts to send negotiations as soon as the connection is opened.

• In passivemode, PuTTY will wait to negotiate until it sees a negotiation from the server.

The obvious disadvantage of passive mode is that if the server is also operating in a passive
mode, then negotiation will never begin at all. For this reason PuTTY defaults to active mode.

However, sometimes passive mode is required in order to successfully get through certain types
of firewall and Telnet proxy server. If you have confusing trouble with a firewall, you could try
enabling passive mode to see if it helps.
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4.30.3 ‘Keyboard sends Telnet special commands’

If this box is checked, several key sequences will have their normal actions modified:

• the Backspace key on the keyboard will send the Telnet special backspace code;

• Control-C will send the Telnet special Interrupt Process code;

• Control-Z will send the Telnet special Suspend Process code.

You probably shouldn't enable this unless you know what you're doing.

4.30.4 ‘Return key sends Telnet New Line instead of ^M’

Unlike most other remote login protocols, the Telnet protocol has a special ‘new line’ code that
is not the same as the usual line endings of Control-M or Control-J. By default, PuTTY sends
the Telnet New Line code when you press Return, instead of sending Control-M as it does in
most other protocols.

Most Unix-style Telnet servers don't mind whether they receive Telnet New Line or Control-M;
some servers do expect New Line, and some servers prefer to see ^M. If you are seeing surprising
behaviour when you press Return in a Telnet session, you might try turning this option off to
see if it helps.

4.31 The Rlogin panel

The Rlogin panel allows you to configure options that only apply to Rlogin sessions.

4.31.1 ‘Local username’

Rlogin allows an automated (password-free) form of login by means of a file called
.rhosts on the server. You put a line in your.rhosts file saying something like
jbloggs@pc1.example.com , and then when you make an Rlogin connection the client
transmits the username of the user running the Rlogin client. The server checks the username
and hostname against.rhosts , and if they match it does not ask for a password.

This only works because Unix systems contain a safeguard to stop a user from pretending to
be another user in an Rlogin connection. Rlogin connections have to come from port numbers
below 1024, and Unix systems prohibit this to unprivileged processes; so when the server sees
a connection from a low-numbered port, it assumes the client end of the connection is held by
a privileged (and therefore trusted) process, so it believes the claim of who the user is.

Windows does not have this restriction:any user can initiate an outgoing connection from a
low-numbered port. Hence, the Rlogin.rhosts mechanism is completely useless for securely
distinguishing several different users on a Windows machine. If you have a.rhosts entry
pointing at a Windows PC, you should assume thatanyoneusing that PC can spoof your
username in an Rlogin connection and access your account on the server.

The ‘Local username’ control allows you to specify what user name PuTTY should claim you
have, in case it doesn't match your Windows user name (or in case you didn't bother to set up a
Windows user name).
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4.32 The SUPDUP panel
The SUPDUP panel allows you to configure options that only apply to SUPDUP sessions. See
section 3.10 for more about the SUPDUP protocol.

4.32.1 ‘Location string’

In SUPDUP, the client sends a piece of text of its choice to the server giving the user's location.
This is typically displayed in lists of logged-in users.

By default, PuTTY just defaults this to "The Internet". If you want your location to show up as
something more specific, you can configure it here.

4.32.2 ‘Extended ASCII Character set’

This declares what kind of character set extension your terminal supports. If the server supports
it, it will send text using that character set. ‘None’ means the standard 95 printable ASCII
characters. ‘ITS’ means ASCII extended with printable characters in the control character range.
This character set is documented in the SUPDUP protocol definition. ‘WAITS’ is similar to
‘ITS’ but uses some alternative characters in the extended set: most prominently, it will display
arrows instead of̂ and_, and} instead of~. ‘ITS’ extended ASCII is used by ITS and Lisp
machines, whilst ‘WAITS’ is only used by the WAITS operating system from the Stanford AI
Laboratory.

4.32.3 ‘**MORE** processing’

When **MORE** processing is enabled, the server causes output to pause at the bottom of the
screen, until a space is typed.

4.32.4 ‘Terminal scrolling’

This controls whether the terminal will perform scrolling then the cursor goes below the last
line, or if the cursor will return to the first line.

4.33 Storing configuration in a file
PuTTY does not currently support storing its configuration in a file instead of the Registry.
However, you can work around this with a couple of batch files.

You will need a file called (say)PUTTY.BAT which imports the contents of a file into the
Registry, then runs PuTTY, exports the contents of the Registry back into the file, and deletes
the Registry entries. This can all be done using the Regedit command line options, so it's all
automatic. Here is what you need inPUTTY.BAT:

@ECHO OFF
regedit /s putty.reg
regedit /s puttyrnd.reg
start /w putty.exe
regedit /ea new.reg HKEY_CURRENT_USER\Software\SimonTatham\PuTTY
copy new.reg putty.reg
del new.reg
regedit /s puttydel.reg

This batch file needs two auxiliary files:PUTTYRND.REGwhich sets up an initial safe location
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for thePUTTY.RNDrandom seed file, andPUTTYDEL.REGwhich destroys everything in the
Registry once it's been successfully saved back to the file.

Here isPUTTYDEL.REG:

REGEDIT4

[-HKEY_CURRENT_USER\Software\SimonTatham\PuTTY]

Here is an examplePUTTYRND.REGfile:

REGEDIT4

[HKEY_CURRENT_USER\Software\SimonTatham\PuTTY]
"RandSeedFile"="a:\\putty.rnd"

You should replacea:\putty.rnd with the location where you want to store your random
number data. If the aim is to carry around PuTTY and its settings on one USB stick, you probably
want to store it on the USB stick.
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Chapter 5: Using PSCP to transfer files securely

PSCP, the PuTTY Secure Copy client, is a tool for transferring files securely between computers
using an SSH connection.

If you have an SSH-2 server, you might prefer PSFTP (see chapter 6) for interactive use. PSFTP
does not in general work with SSH-1 servers, however.

5.1 Starting PSCP
PSCP is a command line application. This means that you cannot just double-click on its icon to
run it and instead you have to bring up a console window. With Windows 95, 98, and ME, this
is called an ‘MS-DOS Prompt’ and with Windows NT, 2000, and XP, it is called a ‘Command
Prompt’. It should be available from the Programs section of your Start Menu.

To start PSCP it will need either to be on yourPATHor in your current directory. To add the
directory containing PSCP to yourPATHenvironment variable, type into the console window:

set PATH=C:\path\to\putty\directory;%PATH%

This will only work for the lifetime of that particular console window. To set yourPATHmore
permanently on Windows NT, 2000, and XP, use the Environment tab of the System Control
Panel. On Windows 95, 98, and ME, you will need to edit yourAUTOEXEC.BATto include a
set command like the one above.

5.2 PSCP Usage
Once you've got a console window to type into, you can just typepscp on its own to bring up a
usage message. This tells you the version of PSCP you're using, and gives you a brief summary
of how to use PSCP:

C:\>pscp
PuTTY Secure Copy client
Release 0.78
Usage: pscp [options] [user@]host:source target
       pscp [options] source [source...] [user@]host:target
       pscp [options] -ls [user@]host:filespec
Options:
  -V        print version information and exit
  -pgpfp    print PGP key fingerprints and exit
  -p        preserve file attributes
  -q        quiet, don't show statistics
  -r        copy directories recursively
  -v        show verbose messages
  -load sessname  Load settings from saved session
  -P port   connect to specified port
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  -l user   connect with specified username
  -pwfile file   login with password read from specified file
  -1 -2     force use of particular SSH protocol version
  -ssh -ssh-connection
            force use of particular SSH protocol variant
  -4 -6     force use of IPv4 or IPv6
  -C        enable compression
  -i key    private key file for user authentication
  -noagent  disable use of Pageant
  -agent    enable use of Pageant
  -no-trivial-auth
            disconnect if SSH authentication succeeds trivially
  -hostkey keyid
            manually specify a host key (may be repeated)
  -batch    disable all interactive prompts
  -no-sanitise-stderr  don't strip control chars from standard error
  -proxycmd command
            use 'command' as local proxy
  -unsafe   allow server-side wildcards (DANGEROUS)
  -sftp     force use of SFTP protocol
  -scp      force use of SCP protocol
  -sshlog file
  -sshrawlog file
            log protocol details to a file
  -logoverwrite
  -logappend
            control what happens when a log file already exists

(PSCP's interface is much like the Unixscp command, if you're familiar with that.)

5.2.1 The basics

To receive (a) file(s) from a remote server:

pscp [options] [user@]host:source target

So to copy the file/etc/hosts from the serverexample.com as userfred to the file
c:\temp\example-hosts.txt , you would type:

pscp fred@example.com:/etc/hosts c:\temp\example-hosts.txt

To send (a) file(s) to a remote server:

pscp [options] source [source...] [user@]host:target

So to copy the local filec:\documents\foo.txt to the serverexample.com as user
fred to the file/tmp/foo you would type:

pscp c:\documents\foo.txt fred@example.com:/tmp/foo

You can use wildcards to transfer multiple files in either direction, like this:

pscp c:\documents\*.doc fred@example.com:docfiles
pscp fred@example.com:source/*.c c:\source
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However, in the second case (using a wildcard for multiple remote files) you may see a warning
saying something like ‘warning: remote host tried to write to a file called ‘terminal.c ’ when
we requested a file called ‘*.c ’. If this is a wildcard, consider upgrading to SSH-2 or using the
‘ -unsafe ’ option. Renaming of this file has been disallowed’.

This is due to a fundamental insecurity in the old-style SCP protocol: the client sends the
wildcard string (*.c ) to the server, and the server sends back a sequence of file names that
match the wildcard pattern. However, there is nothing to stop the server sending back adifferent
pattern and writing over one of your other files: if you request*.c , the server might send back
the file nameAUTOEXEC.BATand install a virus for you. Since the wildcard matching rules
are decided by the server, the client cannot reliably verify that the filenames sent back match
the pattern.

PSCP will attempt to use the newer SFTP protocol (part of SSH-2) where possible, which does
not suffer from this security flaw. If you are talking to an SSH-2 server which supports SFTP,
you will never see this warning. (You can force use of the SFTP protocol, if available, with-
sftp - see section 5.2.2.6.)

If you really need to use a server-side wildcard with an SSH-1 server, you can use the-unsafe
command line option with PSCP:

pscp -unsafe fred@example.com:source/*.c c:\source

This will suppress the warning message and the file transfer will happen. However, you should
be aware that by using this option you are giving the server the ability to write toanyfile in the
target directory, so you should only use this option if you trust the server administrator not to
be malicious (and not to let the server machine be cracked by malicious people). Alternatively,
do any such download in a newly created empty directory. (Even in ‘unsafe’ mode, PSCP will
still protect you against the server trying to get out of that directory using pathnames including
‘ .. ’.)

5.2.1.1 user

The login name on the remote server. If this is omitted, andhost is a PuTTY saved session,
PSCP will use any username specified by that saved session. Otherwise, PSCP will attempt to
use the local Windows username.

5.2.1.2 host

The name of the remote server, or the name of an existing PuTTY saved session. In the latter
case, the session's settings for hostname, port number, cipher type and username will be used.

5.2.1.3 source

One or more source files. Wildcards are allowed. The syntax of wildcards depends on the system
to which they apply, so if you are copyingfrom a Windows systemto a UNIX system, you
should use Windows wildcard syntax (e.g.*.* ), but if you are copyingfroma UNIX systemto
a Windows system, you would use the wildcard syntax allowed by your UNIX shell (e.g.* ).

If the source is a remote server and you do not specify a full pathname (in UNIX, a pathname
beginning with a/ (slash) character), what you specify as a source will be interpreted relative
to your home directory on the remote server.
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5.2.1.4 target

The filename or directory to put the file(s). When copying from a remote server to a local host,
you may wish simply to place the file(s) in the current directory. To do this, you should specify
a target of. . For example:

pscp fred@example.com:/home/tom/.emacs .

...would copy/home/tom/.emacs on the remote server to the current directory.

As with thesource parameter, if the target is on a remote server and is not a full path name,
it is interpreted relative to your home directory on the remote server.

5.2.2 Options

PSCP accepts all the general command line options supported by the PuTTY tools, except the
ones which make no sense in a file transfer utility. See section 3.11.3 for a description of these
options. (The ones not supported by PSCP are clearly marked.)

PSCP also supports some of its own options. The following sections describe PSCP's specific
command-line options.

5.2.2.1 -ls list remote files

If the -ls option is given, no files are transferred; instead, remote files are listed. Only a
hostname specification and optional remote file specification need be given. For example:

pscp -ls fred@example.com:dir1

The SCP protocol does not contain within itself a means of listing files. If SCP is in use, this
option therefore assumes that the server responds appropriately to the commandls -la ; this
may not work with all servers.

If SFTP is in use, this option should work with all servers.

5.2.2.2 -p preserve file attributes

By default, files copied with PSCP are timestamped with the date and time they were copied.
The-p option preserves the original timestamp on copied files.

5.2.2.3 -q quiet, don't show statistics

By default, PSCP displays a meter displaying the progress of the current transfer:

mibs.tar          |   168 kB |  84.0 kB/s | ETA: 00:00:13 |  13%

The fields in this display are (from left to right), filename, size (in kilobytes) of file transferred
so far, estimate of how fast the file is being transferred (in kilobytes per second), estimated time
that the transfer will be complete, and percentage of the file so far transferred. The-q option
to PSCP suppresses the printing of these statistics.

5.2.2.4 -r copies directories recursively

By default, PSCP will only copy files. Any directories you specify to copy will be skipped, as
will their contents. The-r option tells PSCP to descend into any directories you specify, and to
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copy them and their contents. This allows you to use PSCP to transfer whole directory structures
between machines.

5.2.2.5 -batch avoid interactive prompts

If you use the-batch option, PSCP will never give an interactive prompt while establishing the
connection. If the server's host key is invalid, for example (see section 2.2), then the connection
will simply be abandoned instead of asking you what to do next.

This may help PSCP's behaviour when it is used in automated scripts: using-batch , if
something goes wrong at connection time, the batch job will fail rather than hang.

5.2.2.6 -sftp , -scp force use of particular file transfer protocol

As mentioned in section 5.2.1, there are two different file transfer protocols in use with SSH.
Despite its name, PSCP (like many other ostensiblescp clients) can use either of these
protocols.

The older SCP protocol does not have a written specification and leaves a lot of detail to
the server platform. Wildcards are expanded on the server. The simple design means that any
wildcard specification supported by the server platform (such as brace expansion) can be used,
but also leads to interoperability issues such as with filename quoting (for instance, where
filenames contain spaces), and also the security issue described in section 5.2.1.

The newer SFTP protocol, which is usually associated with SSH-2 servers, is specified in a
more platform independent way, and leaves issues such as wildcard syntax up to the client.
(PuTTY's SFTP wildcard syntax is described in section 6.2.2.) This makes it more consistent
across platforms, more suitable for scripting and automation, and avoids security issues with
wildcard matching.

Normally PSCP will attempt to use the SFTP protocol, and only fall back to the SCP protocol
if SFTP is not available on the server.

The-scp option forces PSCP to use the SCP protocol or quit.

The-sftp option forces PSCP to use the SFTP protocol or quit. When this option is specified,
PSCP looks harder for an SFTP server, which may allow use of SFTP with SSH-1 depending
on server setup.

5.2.2.7 -no-sanitise-stderr : control error message sanitisation

The-no-sanitise-stderr option will cause PSCP to pass through the server's standard-
error stream literally, without stripping control characters from it first. This might be useful if
the server were sending coloured error messages, but it also gives the server the ability to have
unexpected effects on your terminal display. For more discussion, see section 7.2.3.5.

5.2.3 Return value

PSCP returns anERRORLEVELof zero (success) only if the files were correctly transferred.
You can test for this in a batch file, using code such as this:

pscp file*.* user@hostname:
if errorlevel 1 echo There was an error
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5.2.4 Using public key authentication with PSCP

Like PuTTY, PSCP can authenticate using a public key instead of a password. There are three
ways you can do this.

Firstly, PSCP can use PuTTY saved sessions in place of hostnames (see section 5.2.1.2). So you
would do this:

• Run PuTTY, and create a PuTTY saved session (see section 4.1.2) which specifies your
private key file (see section 4.22.1). You will probably also want to specify a username to
log in as (see section 4.15.1).

• In PSCP, you can now use the name of the session instead of a hostname: type
pscp sessionname:file localfile , wheresessionname is replaced by the
name of your saved session.

Secondly, you can supply the name of a private key file on the command line, with the-i option.
See section 3.11.3.18 for more information.

Thirdly, PSCP will attempt to authenticate using Pageant if Pageant is running (see chapter 9).
So you would do this:

• Ensure Pageant is running, and has your private key stored in it.

• Specify a user and host name to PSCP as normal. PSCP will automatically detect Pageant
and try to use the keys within it.

For more general information on public-key authentication, see chapter 8.
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Chapter 6: Using PSFTP to transfer files
securely

PSFTP, the PuTTY SFTP client, is a tool for transferring files securely between computers using
an SSH connection.

PSFTP differs from PSCP in the following ways:

• PSCP should work on virtually every SSH server. PSFTP uses the new SFTP protocol,
which is a feature of SSH-2 only. (PSCP will also use this protocol if it can, but there is an
SSH-1 equivalent it can fall back to if it cannot.)

• PSFTP allows you to run an interactive file transfer session, much like the Windowsftp
program. You can list the contents of directories, browse around the file system, issue
multipleget andput commands, and eventually log out. By contrast, PSCP is designed
to do a single file transfer operation and immediately terminate.

6.1 Starting PSFTP
The usual way to start PSFTP is from a command prompt, much like PSCP. To do this, it will
need either to be on yourPATHor in your current directory. To add the directory containing
PSFTP to yourPATHenvironment variable, type into the console window:

set PATH=C:\path\to\putty\directory;%PATH%

Unlike PSCP, however, PSFTP has no complex command-line syntax; you just specify a host
name and perhaps a user name:

psftp server.example.com

or perhaps

psftp fred@server.example.com

Alternatively, if you just typepsftp on its own (or double-click the PSFTP icon in the Windows
GUI), you will see the PSFTP prompt, and a message telling you PSFTP has not connected to
any server:

C:\>psftp
psftp: no hostname specified; use "open host.name" to connect
psftp>

At this point you can type open server.example.com or
open fred@server.example.com to start a session.

PSFTP accepts all the general command line options supported by the PuTTY tools, except the
ones which make no sense in a file transfer utility. See section 3.11.3 for a description of these

112



options. (The ones not supported by PSFTP are clearly marked.)

PSFTP also supports some of its own options. The following sections describe PSFTP's specific
command-line options.

6.1.1 -b : specify a file containing batch commands

In normal operation, PSFTP is an interactive program which displays a command line and
accepts commands from the keyboard.

If you need to do automated tasks with PSFTP, you would probably prefer to specify a set of
commands in advance and have them executed automatically. The-b option allows you to do
this. You use it with a file name containing batch commands. For example, you might create a
file calledmyscript.scr containing lines like this:

cd /home/ftp/users/jeff
del jam-old.tar.gz
ren jam.tar.gz jam-old.tar.gz
put jam.tar.gz
chmod a+r jam.tar.gz

and then you could run the script by typing

psftp user@hostname -b myscript.scr

When you run a batch script in this way, PSFTP will abort the script if any command fails to
complete successfully. To change this behaviour, you can add the-be option (section 6.1.3).

PSFTP will terminate after it finishes executing the batch script.

6.1.2 -bc : display batch commands as they are run

The-bc option alters what PSFTP displays while processing a batch script specified with-b .
With the-bc option, PSFTP will display prompts and commands just as if the commands had
been typed at the keyboard. So instead of seeing this:

C:\>psftp fred@hostname -b batchfile
Sent username "fred"
Remote working directory is /home/fred
Listing directory /home/fred/lib
drwxrwsr-x    4 fred     fred         1024 Sep  6 10:42 .
drwxr-sr-x   25 fred     fred         2048 Dec 14 09:36 ..
drwxrwsr-x    3 fred     fred         1024 Apr 17  2000 jed
lrwxrwxrwx    1 fred     fred           24 Apr 17  2000 timber
drwxrwsr-x    2 fred     fred         1024 Mar 13  2000 trn

you might see this:

C:\>psftp fred@hostname -bc -b batchfile
Sent username "fred"
Remote working directory is /home/fred
psftp> dir lib
Listing directory /home/fred/lib
drwxrwsr-x    4 fred     fred         1024 Sep  6 10:42 .
drwxr-sr-x   25 fred     fred         2048 Dec 14 09:36 ..
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drwxrwsr-x    3 fred     fred         1024 Apr 17  2000 jed
lrwxrwxrwx    1 fred     fred           24 Apr 17  2000 timber
drwxrwsr-x    2 fred     fred         1024 Mar 13  2000 trn
psftp> quit

6.1.3 -be : continue batch processing on errors

When running a batch file, this additional option causes PSFTP to continue processing even if
a command fails to complete successfully.

You might want this to happen if you wanted to delete a file and didn't care if it was already not
present, for example.

6.1.4 -batch : avoid interactive prompts

If you use the-batch option, PSFTP will never give an interactive prompt while establishing
the connection. If the server's host key is invalid, for example (see section 2.2), then the
connection will simply be abandoned instead of asking you what to do next.

This may help PSFTP's behaviour when it is used in automated scripts: using-batch , if
something goes wrong at connection time, the batch job will fail rather than hang.

6.1.4.1 -no-sanitise-stderr : control error message sanitisation

The-no-sanitise-stderr option will cause PSFTP to pass through the server's standard-
error stream literally, without stripping control characters from it first. This might be useful if
the server were sending coloured error messages, but it also gives the server the ability to have
unexpected effects on your terminal display. For more discussion, see section 7.2.3.5.

6.2 Running PSFTP
Once you have started your PSFTP session, you will see apsftp> prompt. You can now type
commands to perform file-transfer functions. This section lists all the available commands.

Any line starting with a# will be treated as a comment and ignored.

6.2.1 General quoting rules for PSFTP commands

Most PSFTP commands are considered by the PSFTP command interpreter
as a sequence of words, separated by spaces. For example, the command
ren oldfilename newfilename splits up into three words:ren (the command name),
oldfilename (the name of the file to be renamed), andnewfilename (the new name to
give the file).

Sometimes you will need to specify file names thatcontainspaces. In order to do this, you can
surround the file name with double quotes. This works equally well for local file names and
remote file names:

psftp> get "spacey file name.txt" "save it under this name.txt"

The double quotes themselves will not appear as part of the file names; they are removed by
PSFTP and their only effect is to stop the spaces inside them from acting as word separators.

If you need tousea double quote (on some types of remote system, such as Unix, you are allowed
to use double quotes in file names), you can do this by doubling it. This works both inside and
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outside double quotes. For example, this command

psftp> ren ""this"" "a file with ""quotes"" in it"

will take a file whose current name is"this" (with a double quote character at the beginning
and the end) and rename it to a file whose name isa file with "quotes" in it .

(The one exception to the PSFTP quoting rules is the! command, which passes its command
line straight to Windows without splitting it up into words at all. See section 6.2.19.)

6.2.2 Wildcards in PSFTP

Several commands in PSFTP support ‘wildcards’ to select multiple files.

For local file specifications (such as the first argument toput ), wildcard rules for the local
operating system are used. For instance, PSFTP running on Windows might require the use of
*.* where PSFTP on Unix would need* .

For remotefile specifications (such as the first argument toget ), PSFTP uses a standard
wildcard syntax (similar to POSIX wildcards):

• * matches any sequence of characters (including a zero-length sequence).

• ? matches exactly one character.

• [abc] matches exactly one character which can bea, b, or c .

[a-z] matches any character in the rangea to z .

[^abc] matches a single character that isnota, b, or c .

Special cases:[-a] matches a literal hyphen (- ) ora; [^-a] matches all other characters.
[a^] matches a literal caret (^ ) or a.

• \ (backslash) before any of the above characters (or itself) removes that character's special
meaning.

A leading period (. ) on a filename is not treated specially, unlike in some Unix contexts;get *
will fetch all files, whether or not they start with a leading period.

6.2.3 The open command: start a session

If you started PSFTP by double-clicking in the GUI, or just by typingpsftp at the command
line, you will need to open a connection to an SFTP server before you can issue any other
commands (excepthelp andquit ).

To create a connection, typeopen host.name , or if you need to specify a user name as
well you can typeopen user@host.name . You can optionally specify a port as well:
open user@host.name 22 .

Once you have issued this command, you will not be able to issue it again,evenif the command
fails (for example, if you mistype the host name or the connection times out). So if the connection
is not opened successfully, PSFTP will terminate immediately.

6.2.4 The quit command: end your session

When you have finished your session, type the commandquit to close the connection,
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terminate PSFTP and return to the command line (or just close the PSFTP console window if
you started it from the GUI).

You can also use thebye andexit commands, which have exactly the same effect.

6.2.5 The close command: close your connection

If you just want to close the network connection but keep PSFTP running, you can use the
close command. You can then use theopen command to open a new connection.

6.2.6 The help command: get quick online help

If you typehelp , PSFTP will give a short list of the available commands.

If you typehelp with a command name - for example,help get - then PSFTP will give a
short piece of help on that particular command.

6.2.7 The cd and pwd commands: changing the remote working directory

PSFTP maintains a notion of your ‘working directory’ on the server. This is the default directory
that other commands will operate on. For example, if you typeget filename.dat then
PSFTP will look forfilename.dat in your remote working directory on the server.

To change your remote working directory, use thecd command. If you don't provide an
argument,cd will return you to your home directory on the server (more precisely, the remote
directory you were in at the start of the connection).

To display your current remote working directory, typepwd.

6.2.8 The lcd and lpwd commands: changing the local working directory

As well as having a working directory on the remote server, PSFTP also has a working directory
on your local machine (just like any other Windows process). This is the default local directory
that other commands will operate on. For example, if you typeget filename.dat then
PSFTP will save the resulting file asfilename.dat in your local working directory.

To change your local working directory, use thelcd command. To display your current local
working directory, typelpwd .

6.2.9 The get command: fetch a file from the server

To download a file from the server and store it on your local PC, you use theget command.

In its simplest form, you just use this with a file name:

get myfile.dat

If you want to store the file locally under a different name, specify the local file name after the
remote one:

get myfile.dat newname.dat

This will fetch the file on the server calledmyfile.dat , but will save it to your local machine
under the namenewname.dat .

To fetch an entire directory recursively, you can use the-r option:
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get -r mydir
get -r mydir newname

(If you want to fetch a file whose name starts with a hyphen, you may have to use the-- special
argument, which stopsget from interpreting anything as a switch after it. For example, ‘get -
- -silly-name- ’.)

6.2.10 The put command: send a file to the server

To upload a file to the server from your local PC, you use theput command.

In its simplest form, you just use this with a file name:

put myfile.dat

If you want to store the file remotely under a different name, specify the remote file name after
the local one:

put myfile.dat newname.dat

This will send the local file calledmyfile.dat , but will store it on the server under the name
newname.dat .

To send an entire directory recursively, you can use the-r option:

put -r mydir
put -r mydir newname

(If you want to send a file whose name starts with a hyphen, you may have to use the-- special
argument, which stopsput from interpreting anything as a switch after it. For example, ‘put -
- -silly-name- ’.)

6.2.11 The mget and mput commands: fetch or send multiple files

mget works almost exactly likeget , except that it allows you to specify more than one file to
fetch at once. You can do this in two ways:

• by giving two or more explicit file names (‘mget file1.txt file2.txt ’)

• by using a wildcard (‘mget *.txt ’).

Every argument tomget is treated as the name of a file to fetch (unlikeget , which will interpret
at most one argument like that, and a second argument will be treated as an alternative name
under which to store the retrieved file), or a wildcard expression matching more than one file.

The-r and-- options fromget are also available withmget .

mput is similar toput , with the same differences.

6.2.12 The reget and reput commands: resuming file transfers

If a file transfer fails half way through, and you end up with half the file stored on your disk,
you can resume the file transfer using thereget andreput commands. These work exactly
like theget andput commands, but they check for the presence of the half-written destination
file and start transferring from where the last attempt left off.

The syntax ofreget andreput is exactly the same as the syntax ofget andput :
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reget myfile.dat
reget myfile.dat newname.dat
reget -r mydir

These commands are intended mainly for resuming interrupted transfers. They assume that the
remote file or directory structure has not changed in any way; if there have been changes, you
may end up with corrupted files. In particular, the-r option will not pick up changes to files or
directories already transferred in full.

6.2.13 The dir command: list remote files

To list the files in your remote working directory, just typedir .

You can also list the contents of a different directory by typingdir followed by the directory
name:

dir /home/fred
dir sources

And you can list a subset of the contents of a directory by providing a wildcard:

dir /home/fred/*.txt
dir sources/*.c

The ls command works exactly the same way asdir .

6.2.14 The chmod command: change permissions on remote files

PSFTP allows you to modify the file permissions on files and directories on the server. You do
this using thechmod command, which works very much like the Unixchmod command.

The basic syntax ischmod modes file , wheremodes represents a modification to the file
permissions, andfile is the filename to modify. You can specify multiple files or wildcards.
For example:

chmod go-rwx,u+w privatefile
chmod a+r public*
chmod 640 groupfile1 groupfile2

Themodes parameter can be a set of octal digits in the Unix style. (If you don't know what
this means, you probably don't want to be using it!) Alternatively, it can be a list of permission
modifications, separated by commas. Each modification consists of:

• The people affected by the modification. This can beu (the owning user),g (members of
the owning group), oro (everybody else - ‘others’), or some combination of those. It can
also bea (‘all’) to affect everybody at once.

• A + or - sign, indicating whether permissions are to be added or removed.

• The actual permissions being added or removed. These can ber (permission to read the
file), w(permission to write to the file), andx (permission to execute the file, or in the case
of a directory, permission to access files within the directory).

So the above examples would do:

• The first example:go-rwx removes read, write and execute permissions for members of

118



the owning group and everybody else (so the only permissions left are the ones for the file
owner).u+w adds write permission for the file owner.

• The second example:a+r adds read permission for everybody to all files and directories
starting with ‘public’.

In addition to all this, there are a few extra special cases for Unix systems. On non-Unix systems
these are unlikely to be useful:

• You can specifyu+s andu-s to add or remove the Unix set-user-ID bit. This is typically
only useful for special purposes; refer to your Unix documentation if you're not sure about
it.

• You can specifyg+s andg-s to add or remove the Unix set-group-ID bit. On a file, this
works similarly to the set-user-ID bit (see your Unix documentation again); on a directory
it ensures that files created in the directory are accessible by members of the group that
owns the directory.

• You can specify+t and -t to add or remove the Unix ‘sticky bit’. When applied to a
directory, this means that the owner of a file in that directory can delete the file (whereas
normally only the owner of thedirectorywould be allowed to).

6.2.15 The del command: delete remote files

To delete a file on the server, typedel and then the filename or filenames:

del oldfile.dat
del file1.txt file2.txt
del *.o

Files will be deleted without further prompting, even if multiple files are specified.

del will only delete files. You cannot use it to delete directories; usermdir for that.

Therm command works exactly the same way asdel .

6.2.16 The mkdir command: create remote directories

To create a directory on the server, typemkdir and then the directory name:

mkdir newstuff

You can specify multiple directories to create at once:

mkdir dir1 dir2 dir3

6.2.17 The rmdir command: remove remote directories

To remove a directory on the server, typermdir and then the directory name or names:

rmdir oldstuff
rmdir *.old ancient

Directories will be deleted without further prompting, even if multiple directories are specified.

Most SFTP servers will probably refuse to remove a directory if the directory has anything in
it, so you will need to delete the contents first.
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6.2.18 The mv command: move and rename remote files

To rename a single file on the server, typemv, then the current file name, and then the new file
name:

mv oldfile newname

You can also move the file into a different directory and change the name:

mv oldfile dir/newname

To move one or more files into an existing subdirectory, specify the files (using wildcards if
desired), and then the destination directory:

mv file dir
mv file1 dir1/file2 dir2
mv *.c *.h ..

Therename andren commands work exactly the same way asmv.

6.2.19 The ! command: run a local Windows command

You can run local Windows commands using the! command. This is the only PSFTP command
that is not subject to the command quoting rules given in section 6.2.1. If any command line
begins with the! character, then the rest of the line will be passed straight to Windows without
further translation.

For example, if you want to move an existing copy of a file out of the way before downloading
an updated version, you might type:

psftp> !ren myfile.dat myfile.bak
psftp> get myfile.dat

using the Windowsren command to rename files on your local PC.

6.3 Using public key authentication with PSFTP
Like PuTTY, PSFTP can authenticate using a public key instead of a password. There are three
ways you can do this.

Firstly, PSFTP can use PuTTY saved sessions in place of hostnames. So you might do this:

• Run PuTTY, and create a PuTTY saved session (see section 4.1.2) which specifies your
private key file (see section 4.22.1). You will probably also want to specify a username to
log in as (see section 4.15.1).

• In PSFTP, you can now use the name of the session instead of a hostname: type
psftp sessionname , wheresessionname is replaced by the name of your saved
session.

Secondly, you can supply the name of a private key file on the command line, with the-i option.
See section 3.11.3.18 for more information.

Thirdly, PSFTP will attempt to authenticate using Pageant if Pageant is running (see chapter 9).
So you would do this:
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• Ensure Pageant is running, and has your private key stored in it.

• Specify a user and host name to PSFTP as normal. PSFTP will automatically detect Pageant
and try to use the keys within it.

For more general information on public-key authentication, see chapter 8.
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Chapter 7: Using the command-line connection
tool Plink

Plink is a command-line connection tool similar to UNIXssh . It is mostly used for automated
operations, such as making CVS access a repository on a remote server.

Plink is probably not what you want if you want to run an interactive session in a console window.

7.1 Starting Plink
Plink is a command line application. This means that you cannot just double-click on its icon
to run it and instead you have to bring up a console window. In Windows 95, 98, and ME, this
is called an ‘MS-DOS Prompt’, and in Windows NT, 2000, and XP, it is called a ‘Command
Prompt’. It should be available from the Programs section of your Start Menu.

In order to use Plink, the fileplink.exe will need either to be on yourPATHor in your current
directory. To add the directory containing Plink to yourPATHenvironment variable, type into
the console window:

set PATH=C:\path\to\putty\directory;%PATH%

This will only work for the lifetime of that particular console window. To set yourPATHmore
permanently on Windows NT, 2000, and XP, use the Environment tab of the System Control
Panel. On Windows 95, 98, and ME, you will need to edit yourAUTOEXEC.BATto include a
set command like the one above.

7.2 Using Plink
This section describes the basics of how to use Plink for interactive logins and for automated
processes.

Once you've got a console window to type into, you can just typeplink on its own to bring up
a usage message. This tells you the version of Plink you're using, and gives you a brief summary
of how to use Plink:

C:\>plink
Plink: command-line connection utility
Release 0.78
Usage: plink [options] [user@]host [command]
       ("host" can also be a PuTTY saved session name)
Options:
  -V        print version information and exit
  -pgpfp    print PGP key fingerprints and exit
  -v        show verbose messages
  -load sessname  Load settings from saved session
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  -ssh -telnet -rlogin -raw -serial
            force use of a particular protocol
  -ssh-connection
            force use of the bare ssh-connection protocol
  -P port   connect to specified port
  -l user   connect with specified username
  -batch    disable all interactive prompts
  -proxycmd command
            use 'command' as local proxy
  -sercfg configuration-string (e.g. 19200,8,n,1,X)
            Specify the serial configuration (serial only)
The following options only apply to SSH connections:
  -pwfile file   login with password read from specified file
  -D [listen-IP:]listen-port
            Dynamic SOCKS-based port forwarding
  -L [listen-IP:]listen-port:host:port
            Forward local port to remote address
  -R [listen-IP:]listen-port:host:port
            Forward remote port to local address
  -X -x     enable / disable X11 forwarding
  -A -a     enable / disable agent forwarding
  -t -T     enable / disable pty allocation
  -1 -2     force use of particular SSH protocol version
  -4 -6     force use of IPv4 or IPv6
  -C        enable compression
  -i key    private key file for user authentication
  -noagent  disable use of Pageant
  -agent    enable use of Pageant
  -no-trivial-auth
            disconnect if SSH authentication succeeds trivially
  -noshare  disable use of connection sharing
  -share    enable use of connection sharing
  -hostkey keyid
            manually specify a host key (may be repeated)
  -sanitise-stderr, -sanitise-stdout, -no-sanitise-stderr, -no-sanitise-stdout
            do/don't strip control chars from standard output/error
  -no-antispoof   omit anti-spoofing prompt after authentication
  -m file   read remote command(s) from file
  -s        remote command is an SSH subsystem (SSH-2 only)
  -N        don't start a shell/command (SSH-2 only)
  -nc host:port
            open tunnel in place of session (SSH-2 only)
  -sshlog file
  -sshrawlog file
            log protocol details to a file
  -logoverwrite
  -logappend
            control what happens when a log file already exists
  -shareexists
            test whether a connection-sharing upstream exists
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Once this works, you are ready to use Plink.

7.2.1 Using Plink for interactive logins

To make a simple interactive connection to a remote server, just typeplink and then the host
name:

C:\>plink login.example.com

Debian GNU/Linux 2.2 flunky.example.com
flunky login:

You should then be able to log in as normal and run a session. The output sent by the server will be
written straight to your command prompt window, which will most likely not interpret terminal
control codes in the way the server expects it to. So if you run any full-screen applications,
for example, you can expect to see strange characters appearing in your window. Interactive
connections like this are not the main point of Plink.

In order to connect with a different protocol, you can give the command line options-ssh ,
-ssh-connection , -telnet , -rlogin , or -raw . To make an SSH connection, for
example:

C:\>plink -ssh login.example.com
login as:

If you have already set up a PuTTY saved session, then instead of supplying a host name, you
can give the saved session name. This allows you to use public-key authentication, specify a
user name, and use most of the other features of PuTTY:

C:\>plink my-ssh-session
Sent username "fred"
Authenticating with public key "fred@winbox"
Last login: Thu Dec  6 19:25:33 2001 from :0.0
fred@flunky:~$

(You can also use the-load command-line option to load a saved session; see section 3.11.3.1.
If you use-load , the saved session exists, and it specifies a hostname, you cannot also specify
ahost or user@host argument - it will be treated as part of the remote command.)

7.2.2 Using Plink for automated connections

More typically Plink is used with the SSH protocol, to enable you to talk directly to a program
running on the server. To do this you have to ensure Plink isusingthe SSH protocol. You can
do this in several ways:

• Use the-ssh option as described in section 7.2.1.

• Set up a PuTTY saved session that describes the server you are connecting to, and that also
specifies the protocol as SSH.

• Set the Windows environment variablePLINK_PROTOCOLto the wordssh .

Usually Plink is not invoked directly by a user, but run automatically by another process.
Therefore you typically do not want Plink to prompt you for a user name or a password.

124



Next, you are likely to need to avoid the various interactive prompts Plink can produce. You
might be prompted to verify the host key of the server you're connecting to, to enter a user name,
or to enter a password.

To avoid being prompted for the server host key when using Plink for an automated connection,
you can first make amanualconnection (using either of PuTTY or Plink) to the same server,
verify the host key (see section 2.2 for more information), and select ‘Accept’ to add the host key
to the Registry. After that, Plink commands connecting to that server should not give a host key
prompt unless the host key changes. Alternatively, you can specify the appropriate host key(s)
on Plink's command line every time you use it; see section 3.11.3.22.

To avoid being prompted for a user name, you can:

• Use the -l option to specify a user name on the command line. For example,
plink login.example.com -l fred .

• Set up a PuTTY saved session that describes the server you are connecting to, and that also
specifies the username to log in as (see section 4.15.1).

To avoid being prompted for a password, you should almost certainly set up public-key
authentication. (See chapter 8 for a general introduction to public-key authentication.) Again,
you can do this in two ways:

• Set up a PuTTY saved session that describes the server you are connecting to, and that also
specifies a private key file (see section 4.22.1). For this to work without prompting, your
private key will need to have no passphrase.

• Store the private key in Pageant. See chapter 9 for further information.

Once you have done all this, you should be able to run a remote command on the SSH server
machine and have it execute automatically with no prompting:

C:\>plink login.example.com -l fred echo hello, world
hello, world

C:\>

Or, if you have set up a saved session with all the connection details:

C:\>plink mysession echo hello, world
hello, world

C:\>

Then you can set up other programs to run this Plink command and talk to it as if it were a
process on the server machine.

7.2.3 Plink command line options

Plink accepts all the general command line options supported by the PuTTY tools. See section
3.11.3 for a description of these options.

Plink also supports some of its own options. The following sections describe Plink's specific
command-line options.
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7.2.3.1 -batch : disable all interactive prompts

If you use the-batch option, Plink will never give an interactive prompt while establishing the
connection. If the server's host key is invalid, for example (see section 2.2), then the connection
will simply be abandoned instead of asking you what to do next.

This may help Plink's behaviour when it is used in automated scripts: using-batch , if
something goes wrong at connection time, the batch job will fail rather than hang.

7.2.3.2 -s : remote command is SSH subsystem

If you specify the-s option, Plink passes the specified command as the name of an SSH
‘subsystem’ rather than an ordinary command line.

(This option is only meaningful with the SSH-2 protocol.)

7.2.3.3 -share : Test and try to share an existing connection.

This option tris to detect if an existing connection can be shared (See section 4.17.5 for more
information about SSH connection sharing.) and reuses that connection.

A Plink invocation of the form:

plink -share <session>

will test whether there is currently a viable ‘upstream’ for the session in question, which can
be specified using any syntax you'd normally use with Plink to make an actual connection (a
host/port number, a bare saved session name,-load , etc). If no ‘upstream’ viable session is
found and-share is specified, this connection will be become the ‘upstream’ connection for
subsequent connection sharing tries.

(This option is only meaningful with the SSH-2 protocol.)

7.2.3.4 -shareexists : test for connection-sharing upstream

This option does not make a new connection; instead it allows testing for the presence of an
existing connection that can be shared. (See section 4.17.5 for more information about SSH
connection sharing.)

A Plink invocation of the form:

plink -shareexists <session>

will test whether there is currently a viable ‘upstream’ for the session in question, which can
be specified using any syntax you'd normally use with Plink to make an actual connection (a
host/port number, a bare saved session name,-load , etc). It returns a zero exit status if a usable
‘upstream’ exists, nonzero otherwise.

(This option is only meaningful with the SSH-2 protocol.)

7.2.3.5 -sanitise- stream : control output sanitisation

In some situations, Plink applies a sanitisation pass to the output received from the server, to
strip out control characters such as backspace and the escape character.

The idea of this is to prevent remote processes from sending confusing escape sequences through
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the standard error channel when Plink is being used as a transport for something likegit or
CVS. If the server actually wants to send an error message, it will probably be plain text; if the
server abuses that channel to try to write over unexpected parts of your terminal display, Plink
will try to stop it.

By default, this only happens for output channels which are sent to a Windows console device,
or a Unix terminal device. (Any output stream going somewhere else is likely to be needed by
an 8-bit protocol and must not be tampered with at all.) It also stops happening if you tell Plink
to allocate a remote pseudo-terminal (see section 3.11.3.12 and section 4.24.1), on the basis that
in that situation you oftenwantescape sequences from the server to go to your terminal.

But in case Plink guesses wrong about whether you want this sanitisation, you can override it
in either direction, using one of these options:

-sanitise-stderr

Sanitise server data written to Plink's standard error channel, regardless of terminals and
consoles and remote ptys.

-no-sanitise-stderr

Do not sanitise server data written to Plink's standard error channel.

-sanitise-stdout

Sanitise server data written to Plink's standard output channel.

-no-sanitise-stdout

Do not sanitise server data written to Plink's standard output channel.

7.2.3.6 -no-antispoof: turn off authentication spoofing protection prompt

In SSH, some possible server authentication methods require user input (for example, password
authentication, or entering a private key passphrase), and others do not (e.g. a private key held
in Pageant).

If you use Plink to run an interactive login session, and if Plink authenticates without needing
any user interaction, and if the server is malicious or compromised, it could try to trick you
into giving it authentication data that should not go to the server (such as your private key
passphrase), by sending whatlookslike one of Plink's local prompts, as if Plink had not already
authenticated.

To protect against this, Plink's default policy is to finish the authentication phase with a final
trivial prompt looking like this:

Access granted. Press Return to begin session.

so that if you saw anything that looked like an authentication promptafter that line, you would
know it was not from Plink.

That extra interactive step is inconvenient. So Plink will turn it off in as many situations as it
can:

• If Plink's standard input is not pointing at a console or terminal device – for example, if
you're using Plink as a transport for some automated application like version control –
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then youcan'ttype passphrases into the server anyway. In that situation, Plink won't try to
protect you from the server trying to fool you into doing so.

• If Plink is in batch mode (see section 7.2.2), then itnever does any interactive
authentication. So anything looking like an interactive authentication prompt is
automatically suspect, and so Plink omits the anti-spoofing prompt.

But if you still find the protective prompt inconvenient, and you trust the server not to try a trick
like this, you can turn it off using the ‘-no-antispoof ’ option.

7.3 Using Plink in batch files and scripts
Once you have set up Plink to be able to log in to a remote server without any interactive
prompting (see section 7.2.2), you can use it for lots of scripting and batch purposes. For
example, to start a backup on a remote machine, you might use a command like:

plink root@myserver /etc/backups/do-backup.sh

Or perhaps you want to fetch all system log lines relating to a particular web area:

plink mysession grep /~fred/ /var/log/httpd/access.log > fredlog

Any non-interactive command you could usefully run on the server command line, you can run
in a batch file using Plink in this way.

7.4 Using Plink with CVS
To use Plink with CVS, you need to set the environment variableCVS_RSHto point to Plink:

set CVS_RSH=\path\to\plink.exe

You also need to arrange to be able to connect to a remote host without any interactive prompts,
as described in section 7.2.2.

You should then be able to run CVS as follows:

cvs -d :ext:user@sessionname:/path/to/repository co module

If you specified a username in your saved session, you don't even need to specify the ‘user’ part
of this, and you can just say:

cvs -d :ext:sessionname:/path/to/repository co module

7.5 Using Plink with WinCVS
Plink can also be used with WinCVS. Firstly, arrange for Plink to be able to connect to a remote
host non-interactively, as described in section 7.2.2.

Then, in WinCVS, bring up the ‘Preferences’ dialogue box from theAdminmenu, and switch
to the ‘Ports’ tab. Tick the box there labelled ‘Check for an alternatersh name’ and in the
text entry field to the right enter the full path toplink.exe . Select ‘OK’ on the ‘Preferences’
dialogue box.

Next, select ‘Command Line’ from the WinCVS ‘Admin’ menu, and type a CVS command as
in section 7.4, for example:
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cvs -d :ext:user@hostname:/path/to/repository co module

or (if you're using a saved session):

cvs -d :ext:user@sessionname:/path/to/repository co module

Select the folder you want to check out to with the ‘Change Folder’ button, and click ‘OK’ to
check out your module. Once you've got modules checked out, WinCVS will happily invoke
plink from the GUI for CVS operations.
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Chapter 8: Using public keys for SSH
authentication

8.1 Public key authentication - an introduction
Public key authentication is an alternative means of identifying yourself to a login server, instead
of typing a password. It is more secure and more flexible, but more difficult to set up.

In conventional password authentication, you prove you are who you claim to be by proving
that you know the correct password. The only way to prove you know the password is to tell the
server what you think the password is. This means that if the server has been hacked, orspoofed
(see section 2.2), an attacker can learn your password.

Public key authentication solves this problem. You generate akey pair, consisting of a public
key (which everybody is allowed to know) and a private key (which you keep secret and do not
give to anybody). The private key is able to generatesignatures. A signature created using your
private key cannot be forged by anybody who does not have that key; but anybody who has your
public key can verify that a particular signature is genuine.

So you generate a key pair on your own computer, and you copy the public key to the server.
Then, when the server asks you to prove who you are, PuTTY can generate a signature using
your private key. The server can verify that signature (since it has your public key) and allow
you to log in. Now if the server is hacked or spoofed, the attacker does not gain your private
key or password; they only gain one signature. And signatures cannot be re-used, so they have
gained nothing.

There is a problem with this: if your private key is stored unprotected on your own computer,
then anybody who gains access tothat will be able to generate signatures as if they were you.
So they will be able to log in to your server under your account. For this reason, your private
key is usuallyencryptedwhen it is stored on your local machine, using a passphrase of your
choice. In order to generate a signature, PuTTY must decrypt the key, so you have to type your
passphrase.

This can make public-key authentication less convenient than password authentication: every
time you log in to the server, instead of typing a short password, you have to type a longer
passphrase. One solution to this is to use anauthentication agent, a separate program which
holds decrypted private keys and generates signatures on request. PuTTY's authentication agent
is called Pageant. When you begin a Windows session, you start Pageant and load your private
key into it (typing your passphrase once). For the rest of your session, you can start PuTTY
any number of times and Pageant will automatically generate signatures without you having to
do anything. When you close your Windows session, Pageant shuts down, without ever having
stored your decrypted private key on disk. Many people feel this is a good compromise between
security and convenience. See chapter 9 for further details.

There is more than one public-key algorithm available. The most common are RSA and ECDSA,
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but others exist, notably DSA (otherwise known as DSS), the USA's federal Digital Signature
Standard. The key types supported by PuTTY are described in section 8.2.2.

8.2 Using PuTTYgen, the PuTTY key generator
PuTTYgen is a key generator. It generates pairs of public and private keys to be used with
PuTTY, PSCP, PSFTP, and Plink, as well as the PuTTY authentication agent, Pageant (see
chapter 9). PuTTYgen generates RSA, DSA, ECDSA, and EdDSA keys.

When you run PuTTYgen you will see a window where you have two main choices: ‘Generate’,
to generate a new public/private key pair, or ‘Load’ to load in an existing private key.

8.2.1 Generating a new key

This is a general outline of the procedure for generating a new key pair. The following sections
describe the process in more detail.

• First, you need to select which type of key you want to generate, and also select the strength
of the key. This is described in more detail in section 8.2.2 and section 8.2.3.

• Then press the ‘Generate’ button, to actually generate the key. Section 8.2.5 describes this
step.

• Once you have generated the key, select a comment field (section 8.2.7) and a passphrase
(section 8.2.8).

• Now you're ready to save the private key to disk; press the ‘Save private key’ button. (See
section 8.2.10).

Your key pair is now ready for use. You may also want to copy the public key to your server,
either by copying it out of the ‘Public key for pasting into OpenSSH authorized_keys file’ box
(see section 8.2.12), or by using the ‘Save public key’ button (section 8.2.11). However, you
don't need to do this immediately; if you want, you can load the private key back into PuTTYgen
later (see section 8.2.14) and the public key will be available for copying and pasting again.

Section 8.3 describes the typical process of configuring PuTTY to attempt public-key
authentication, and configuring your SSH server to accept it.

8.2.2 Selecting the type of key

Before generating a key pair using PuTTYgen, you need to select which type of key you need.

The current version of the SSH protocol, SSH-2, supports several different key types, although
specific servers may not support all of them. PuTTYgen can generate:

• An RSA key for use with the SSH-2 protocol.

• A DSA key for use with the SSH-2 protocol.

• An ECDSA (elliptic curve DSA) key for use with the SSH-2 protocol.

• An EdDSA key (Edwards-curve DSA, another elliptic curve algorithm) for use with the
SSH-2 protocol.

PuTTYgen can also generate an RSA key suitable for use with the old SSH-1 protocol (which
only supports RSA); for this, you need to select the ‘SSH-1 (RSA)’ option. Since the SSH-1
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protocol is no longer considered secure, it's rare to need this option.

8.2.3 Selecting the size (strength) of the key

The ‘Number of bits’ input box allows you to choose the strength of the key PuTTYgen will
generate.

• For RSA and DSA, 2048 bits should currently be sufficient for most purposes. (Smaller
keys of these types are no longer considered secure, and PuTTYgen will warn if you try
to generate them.)

• For ECDSA, only 256, 384, and 521 bits are supported, corresponding to NIST-
standardised elliptic curves. (Elliptic-curve keys do not need as many bits as RSA keys for
equivalent security, so these numbers are smaller than the RSA recommendations.)

• For EdDSA, the only valid sizes are 255 bits (these keys are also known as ‘Ed25519’
and are commonly used) and 448 bits (‘Ed448’, which is much less common at the time
of writing). (256 is also accepted for backward compatibility, but the effect is the same as
255.)

8.2.4 Selecting the prime generation method

(This is entirely optional. Unless you know better, it's entirely sensible to skip this and use the
default settings.)

On the ‘Key’ menu, you can also optionally change the method for generating the prime numbers
used in the generated key. This is used for RSA and DSA keys only. (The other key types don't
require generating prime numbers at all.)

The prime-generation method does not affect compatibility: a key generated with any of these
methods will still work with all the same SSH servers.

The available methods are:

• Use probable primes (fast)

• Use proven primes (slower)

• Use proven primes with even distribution (slowest)

The ‘probable primes’ method sounds unsafe, but it's the most commonly used prime-generation
strategy. There is in theory a possibility that it might accidentally generate a number that isn't
prime, but the software does enough checking to make that probability vanishingly small (less
than 1 in 2^80, or 1 in 10^24). So, in practice, nobody worries about it very much.

The other methods cause PuTTYgen to use numbers that it issureare prime, because it generates
the output number together with a proof of its primality. This takes more effort, but it eliminates
that theoretical risk in the probabilistic method.

There in one way in which PuTTYgen's ‘proven primes’ method is not strictly better than
its ‘probable primes’ method. If you use PuTTYgen to generate an RSA key on a computer
that is potentially susceptible to timing- or cache-based side-channel attacks, such as a shared
computer, the ‘probable primes’ method is designed to resist such attacks, whereas the ‘proven
primes’ methods are not. (This is only a concern for RSA keys; for other key types, primes are
either not secret or not involved.)
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You might choose to switch from probable to proven primes if you have a local security standard
that demands it, or if you don't trust the probabilistic argument for the safety of the usual method.

For RSA keys, there's also an option on the ‘Key’ menu to use ‘strong’ primes as the prime
factors of the public key. A ‘strong’ prime is a prime number chosen to have a particular structure
that makes certain factoring algorithms more difficult to apply, so some security standards
recommend their use. However, the most modern factoring algorithms are unaffected, so this
option is probably not worth turning onunlessyou have a local standard that recommends it.

8.2.5 The ‘Generate’ button

Once you have chosen the type of key you want, and the strength of the key, press the ‘Generate’
button and PuTTYgen will begin the process of actually generating the key.

First, a progress bar will appear and PuTTYgen will ask you to move the mouse around to
generate randomness. Wave the mouse in circles over the blank area in the PuTTYgen window,
and the progress bar will gradually fill up as PuTTYgen collects enough randomness. You don't
need to wave the mouse in particularly imaginative patterns (although it can't hurt); PuTTYgen
will collect enough randomness just from the fine detail ofexactlyhow far the mouse has moved
each time Windows samples its position.

When the progress bar reaches the end, PuTTYgen will begin creating the key. The progress bar
will reset to the start, and gradually move up again to track the progress of the key generation.
It will not move evenly, and may occasionally slow down to a stop; this is unfortunately
unavoidable, because key generation is a random process and it is impossible to reliably predict
how long it will take.

When the key generation is complete, a new set of controls will appear in the window to indicate
this.

8.2.6 The ‘Key fingerprint’ box

The ‘Key fingerprint’ box shows you a fingerprint value for the generated key. This is derived
cryptographically from thepublickey value, so it doesn't need to be kept secret; it is supposed
to be more manageable for human beings than the public key itself.

The fingerprint value is intended to be cryptographically secure, in the sense that it is
computationally infeasible for someone to invent a second key with the same fingerprint, or to
find a key with a particular fingerprint. So some utilities, such as the Pageant key list box (see
section 9.2.1) and the Unixssh-add utility, will list key fingerprints rather than the whole
public key.

By default, PuTTYgen will display SSH-2 key fingerprints in the ‘SHA256’ format. If you
need to see the fingerprint in the older ‘MD5’ format (which looks likeaa:bb:cc:... ),
you can choose ‘Show fingerprint as MD5’ from the ‘Key’ menu, but bear in mind that this is
less cryptographically secure; it may be feasible for an attacker to create a key with the same
fingerprint as yours.

8.2.7 Setting a comment for your key

If you have more than one key and use them for different purposes, you don't need to memorise
the key fingerprints in order to tell them apart. PuTTYgen allows you to enter acommentfor
your key, which will be displayed whenever PuTTY or Pageant asks you for the passphrase.
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The default comment format, if you don't specify one, contains the key type and the date of
generation, such asrsa-key-20011212 . Another commonly used approach is to use your
name and the name of the computer the key will be used on, such assimon@simons-pc .

To alter the key comment, just type your comment text into the ‘Key comment’ box before saving
the private key. If you want to change the comment later, you can load the private key back into
PuTTYgen, change the comment, and save it again.

8.2.8 Setting a passphrase for your key

The ‘Key passphrase’ and ‘Confirm passphrase’ boxes allow you to choose a passphrase for
your key. The passphrase will be used to encrypt the key on disk, so you will not be able to use
the key without first entering the passphrase.

When you save the key, PuTTYgen will check that the ‘Key passphrase’ and ‘Confirm
passphrase’ boxes both contain exactly the same passphrase, and will refuse to save the key
otherwise.

If you leave the passphrase fields blank, the key will be saved unencrypted. You shouldnot do
this without good reason; if you do, your private key file on disk will be all an attacker needs to
gain access to any machine configured to accept that key. If you want to be able to log in without
having to type a passphrase every time, you should consider using Pageant (chapter 9) so that
your decrypted key is only held in memory rather than on disk.

Under special circumstances you may genuinelyneedto use a key with no passphrase; for
example, if you need to run an automated batch script that needs to make an SSH connection,
you can't be there to type the passphrase. In this case we recommend you generate a special key
for each specific batch script (or whatever) that needs one, and on the server side you should
arrange that each key isrestrictedso that it can only be used for that specific purpose. The
documentation for your SSH server should explain how to do this (it will probably vary between
servers).

Choosing a good passphrase is difficult. Just as you shouldn't use a dictionary word as a password
because it's easy for an attacker to run through a whole dictionary, you should not use a song lyric,
quotation or other well-known sentence as a passphrase. DiceWare (www.diceware.com )
recommends using at least five words each generated randomly by rolling five dice, which gives
over 2^64 possible passphrases and is probably not a bad scheme. If you want your passphrase
to make grammatical sense, this cuts down the possibilities a lot and you should use a longer
one as a result.

Do not forget your passphrase. There is no way to recover it.

8.2.9 Adding a certificate to your key

In some environments, user authentication keys can be signed in turn by a ‘certifying authority’
(‘CA’ for short), and user accounts on an SSH server can be configured to automatically trust
any key that's certified by the right signature.

This can be a convenient setup if you have a very large number of servers. When you change
your key pair, you might otherwise have to edit theauthorized_keys file on every server
individually, to make them all accept the new key. But if instead you configure all those servers
onceto accept keys signed as yours by a CA, then when you change your public key, all you
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have to do is to get the new key certified by the same CA as before, and then all your servers
will automatically accept it without needing individual reconfiguration.

To get your key signed by a CA, you'll probably send the CA the newpublickey (not the private
half), and get back a modified version of the public key with the certificate included.

If you want to incorporate the certificate into your PPK file for convenience, you can use the
‘Add certificate to key’ menu option in PuTTYgen's ‘Key’ menu. This will give you a single file
containing your private key and the certificate, which is everything you need to authenticate to
a server prepared to accept that certificate.

To remove the certificate again and restore the uncertified PPK file, there's also a ‘Remove
certificate from key’ option.

(However, you don'thaveto incorporate the certificate into your PPK file. You can equally well
use it separately, via the ‘Certificate to use with the private key’ option in PuTTY itself. See
section 4.22.2. It's up to you which you find more convenient.)

When the currently loaded key in PuTTYgen contains a certificate, the large ‘Public key for
pasting’ edit box (see section 8.2.12) is replaced by a button that brings up an information box
telling you about the certificate, such as who it certifies your key as belonging to, when it expires
(if ever), and the fingerprint of the CA key that signed it in turn.

8.2.10 Saving your private key to a disk file

Once you have generated a key, set a comment field and set a passphrase, you are ready to save
your private key to disk.

Press the ‘Save private key’ button. PuTTYgen will put up a dialog box asking you where to
save the file. Select a directory, type in a file name, and press ‘Save’.

This file is in PuTTY's native format (*.PPK ); it is the one you will need to tell PuTTY to use
for authentication (see section 4.22.1) or tell Pageant to load (see section 9.2.2).

(You can optionally change some details of the PPK format for your saved key files; see section
8.2.13. But The defaults should be fine for most purposes.)

8.2.11 Saving your public key to a disk file

RFC 4716 specifies a standard format for storing SSH-2 public keys on disk. Some SSH servers
(such asssh.com 's) require a public key in this format in order to accept authentication with
the corresponding private key. (Others, such as OpenSSH, use a different format; see section
8.2.12.)

To save your public key in the SSH-2 standard format, press the ‘Save public key’ button in
PuTTYgen. PuTTYgen will put up a dialog box asking you where to save the file. Select a
directory, type in a file name, and press ‘Save’.

You will then probably want to copy the public key file to your SSH server machine. See section
8.3 for general instructions on configuring public-key authentication once you have generated
a key.

If you use this option with an SSH-1 key, the file PuTTYgen saves will contain exactly the same
text that appears in the ‘Public key for pasting’ box. This is the only existing standard for SSH-
1 public keys.

135



8.2.12 ‘Public key for pasting into OpenSSH authorized_keys file’

The OpenSSH server, among others, requires your public key to be given to it in a one-line
format before it will accept authentication with your private key. (SSH-1 servers also used this
method.)

The ‘Public key for pasting into OpenSSH authorized_keys file’ gives the public-key data in the
correct one-line format. Typically you will want to select the entire contents of the box using the
mouse, press Ctrl+C to copy it to the clipboard, and then paste the data into a PuTTY session
which is already connected to the server.

See section 8.3 for general instructions on configuring public-key authentication once you have
generated a key.

8.2.13 Parameters for saving key files

Selecting ‘Parameters for saving key files...’ from the ‘Key’ menu lets you adjust some aspects
of PPK-format private key files stored on disk. None of these options affect compatibility with
SSH servers.

In most cases, it's entirely sensible to leave all of these at their default settings.

8.2.13.1 PPK file version

This defaults to version 3, which is fine for most uses.

You might need to select PPK version 2 if you need your private key file to be loadable in older
versions of PuTTY (0.74 and older), or in other tools which do not yet support the version 3
format (which was introduced in 2021).

The version 2 format is less resistant to brute-force decryption, and doesn't support any of the
following options to control that.

8.2.13.2 Options affecting passphrase hashing

All of the following options only affect keys saved with passphrases. They control how much
work is required to decrypt the key (which happens every time you type its passphrase). This
allows you to trade off the cost of legitimate use of the key against the resistance of the encrypted
key to password-guessing attacks.

These options only affect PPK version 3.

Key derivation function

The variant of the Argon2 key derivation function to use. You might change this if you
consider your exposure to side-channel attacks to be different to the norm.

Memory to use for passphrase hash

The amount of memory needed to decrypt the key, in Kbyte.

Time to use for passphrase hash

Controls how much time is required to attempt decrypting the key. You can either specify
an approximate time in milliseconds (on this machine), or explicitly specify a number of
hash passes (which is what the time is turned into during encryption).
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Parallelism for passphrase hash

Number of parallelisable threads that can be used to decrypt the key. The default, 1, forces
the process to run single-threaded, even on machines with multiple cores.

8.2.14 Reloading a private key

PuTTYgen allows you to load an existing private key file into memory. If you do this, you can
then change the passphrase and comment before saving it again; you can also make extra copies
of the public key.

To load an existing key, press the ‘Load’ button. PuTTYgen will put up a dialog box where you
can browse around the file system and find your key file. Once you select the file, PuTTYgen
will ask you for a passphrase (if necessary) and will then display the key details in the same way
as if it had just generated the key.

If you use the Load command to load a foreign key format, it will work, but you will see a
message box warning you that the key you have loaded is not a PuTTY native key. See section
8.2.15 for information about importing foreign key formats.

8.2.15 Dealing with private keys in other formats

SSH-2 private keys have no standard format. OpenSSH andssh.com have different formats,
and PuTTY's is different again. So a key generated with one client cannot immediately be used
with another.

Using the ‘Import’ command from the ‘Conversions’ menu, PuTTYgen can load SSH-2 private
keys in OpenSSH's format andssh.com 's format. Once you have loaded one of these key types,
you can then save it back out as a PuTTY-format key (*.PPK ) so that you can use it with the
PuTTY suite. The passphrase will be unchanged by this process (unless you deliberately change
it). You may want to change the key comment before you save the key, since some OpenSSH
key formats contained no space for a comment, andssh.com 's default comment format is long
and verbose.

PuTTYgen can also export private keys in OpenSSH format and inssh.com format. To do so,
select one of the ‘Export’ options from the ‘Conversions’ menu. Exporting a key works exactly
like saving it (see section 8.2.10) - you need to have typed your passphrase in beforehand, and
you will be warned if you are about to save a key without a passphrase.

For OpenSSH there are two options. Modern OpenSSH actually has two formats it uses
for storing private keys. ‘Export OpenSSH key’ will automatically choose the oldest format
supported for the key type, for maximum backward compatibility with older versions of
OpenSSH; for newer key types like Ed25519, it will use the newer format as that is the only legal
option. If you have some specific reason for wanting to use OpenSSH's newer format even for
RSA, DSA, or ECDSA keys, you can choose ‘Export OpenSSH key (force new file format)’.

Most clients for the older SSH-1 protocol use a standard format for storing private keys on disk.
PuTTY uses this format as well; so if you have generated an SSH-1 private key using OpenSSH
or ssh.com 's client, you can use it with PuTTY, and vice versa. Hence, the export options are
not available if you have generated an SSH-1 key.

8.2.16 PuTTYgen command-line configuration

PuTTYgen supports a set of command-line options to configure many of the same settings you

137



can select in the GUI. This allows you to start it up with your own preferences ready-selected,
which might be useful if you generate a lot of keys. (For example, you could make a Windows
shortcut that runs PuTTYgen with some command line options, or a batch file or Powershell
script that you could distribute to a whole organisation containing your local standards.)

The options supported on the command line are:

-t keytype

Type of key to generate. You can selectrsa , dsa , ecdsa , eddsa , ed25519 , ed448 ,
or rsa1 . See section 8.2.2.

-b bits

Size of the key to generate, in bits. See section 8.2.3.

--primes method

Method for generating prime numbers. You can selectprobable , proven , and
proven-even . See section 8.2.4.

--strong-rsa

When generating an RSA key, make sure the prime factors of the key modulus are ‘strong
primes’. See section 8.2.4.

--ppk-param key=value, ...

Allows setting all the same details of the PPK save file format described in section 8.2.13.

Aspects to change are specified as a series ofkey=valuepairs separated by commas. The
keys are:

version

The PPK format version: either3 or 2.

kdf

The variant of Argon2 to use:argon2id , argon2i , andargon2d .

memory

The amount of memory needed to decrypt the key, in Kbyte.

time

Specifies how much time is required to attempt decrypting the key, in milliseconds.

passes

Alternative to time : specifies the number of hash passes required to attempt
decrypting the key.

parallelism

Number of parallelisable threads that can be used to decrypt the key.
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-E fptype

Algorithm to use when displaying key fingerprints. You can selectsha256 or md5. See
section 8.2.6.

8.3 Getting ready for public key authentication
Connect to your SSH server using PuTTY with the SSH protocol. When the connection succeeds
you will be prompted for your user name and password to login. Once logged in, you must
configure the server to accept your public key for authentication:

• If your server is OpenSSH, you should change into the.ssh directory under your home
directory, and open the fileauthorized_keys with your favourite editor. (You may
have to create this file, if this is the first key you have put in it.) Then switch to the PuTTYgen
window, select all of the text in the ‘Public key for pasting into OpenSSH authorized_keys
file’ box (see section 8.2.12), and copy it to the clipboard (Ctrl+C ). Then, switch back
to the PuTTY window and insert the data into the open file, making sure it ends up all on
one line. Save the file.

(In very old versions of OpenSSH, SSH-2 keys had to be put in a separate file called
authorized_keys2 . In all current versions, the sameauthorized_keys file is
used for both SSH-1 and SSH-2 keys.)

• If your server isssh.com 's product and is using SSH-2, you need to save apublic
key file from PuTTYgen (see section 8.2.11), and copy that into the.ssh2 directory
on the server. Then you should go into that.ssh2 directory, and edit (or create) a file
calledauthorization . In this file you should put a line likeKey mykey.pub , with
mykey.pub replaced by the name of your key file.

• For other SSH server software, you should refer to the manual for that server.

You may also need to ensure that your home directory, your.ssh directory, and any other files
involved (such asauthorized_keys , authorized_keys2 or authorization ) are
not group-writable or world-writable; servers will typically ignore the keys unless this is done.
You can typically do this by using a command such as

chmod go-w $HOME $HOME/.ssh $HOME/.ssh/authorized_keys

Your server should now be configured to accept authentication using your private key. Now you
need to configure PuTTY toattemptauthentication using your private key. You can do this in
any of three ways:

• Select the private key in PuTTY's configuration. See section 4.22.1 for details.

• Specify the key file on the command line with the-i option. See section 3.11.3.18 for
details.

• Load the private key into Pageant (see chapter 9). In this case PuTTY will automatically
try to use it for authentication if it can.
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Chapter 9: Using Pageant for authentication

Pageant is an SSH authentication agent. It holds your private keys in memory, already decoded,
so that you can use them often without needing to type a passphrase.

9.1 Getting started with Pageant

Before you run Pageant, you need to have a private key in*.PPK format. See chapter 8 to find
out how to generate and use one.

When you run Pageant, it will put an icon of a computer wearing a hat into the System tray. It
will then sit and do nothing, until you load a private key into it. (You may need to use Windows'
‘Show hidden icons’ arrow to see the Pageant icon.)

If you click the Pageant icon with the right mouse button, you will see a menu. Select ‘View
Keys’ from this menu. The Pageant main window will appear. (You can also bring this window
up by double-clicking on the Pageant icon.)

The Pageant window contains a list box. This shows the private keys Pageant is holding. When
you start Pageant, it has no keys, so the list box will be empty. After you add one or more keys,
they will show up in the list box.

To add a key to Pageant, press the ‘Add Key’ button. Pageant will bring up a file dialog, labelled
‘Select Private Key File’. Find your private key file in this dialog, and press ‘Open’.

Pageant will now load the private key. If the key is protected by a passphrase, Pageant will ask
you to type the passphrase. When the key has been loaded, it will appear in the list in the Pageant
window.

Now start PuTTY and open an SSH session to a site that accepts your key. PuTTY will notice
that Pageant is running, retrieve the key automatically from Pageant, and use it to authenticate.
You can now open as many PuTTY sessions as you like without having to type your passphrase
again.

(PuTTY can be configured not to try to use Pageant, but it will try by default. See section 4.21.4
and section 3.11.3.9 for more information.)

When you want to shut down Pageant, click the right button on the Pageant icon in the System
tray, and select ‘Exit’ from the menu. Closing the Pageant main window doesnot shut down
Pageant.

If you want Pageant to stay running but forget all the keys it has acquired, select ‘Remove All
Keys’ from the System tray menu.
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9.2 The Pageant main window
The Pageant main window appears when you left-click on the Pageant system tray icon, or
alternatively right-click and select ‘View Keys’ from the menu. You can use it to keep track of
what keys are currently loaded into Pageant, and to add new ones or remove the existing keys.

9.2.1 The key list box

The large list box in the Pageant main window lists the private keys that are currently loaded
into Pageant. The list might look something like this:

Ed25519    SHA256:TddlQk20DVs4LRcAsIfDN9pInKpY06D+h4kSHwWAj4w
RSA  2048  SHA256:8DFtyHm3kQihgy52nzX96qMcEVOq7/yJmmwQQhBWYFg

For each key, the list box will tell you:

• The type of the key. Currently, this can be ‘RSA’ (an RSA key for use with the SSH-2
protocol), ‘DSA’ (a DSA key for use with the SSH-2 protocol), ‘NIST’ (an ECDSA key
for use with the SSH-2 protocol), ‘Ed25519’ (an Ed25519 key for use with the SSH-2
protocol), ‘Ed448’ (an Ed448 key for use with the SSH-2 protocol), or ‘SSH-1’ (an RSA
key for use with the old SSH-1 protocol). (If the key has an associated certificate, this is
shown here with a ‘cert’ suffix.)

• The size (in bits) of the key, for key types that come in different sizes. (For ECDSA ‘NIST’
keys, this is indicated as ‘p256’ or ‘p384’ or ‘p521’.)

• The fingerprint for the public key. This should be the same fingerprint given by PuTTYgen,
and (hopefully) also the same fingerprint shown by remote utilities such asssh-keygen
when applied to yourauthorized_keys file.

For SSH-2 keys, by default this is shown in the ‘SHA256’ format. You can change to the
older ‘MD5’ format (which looks likeaa:bb:cc:... ) with the ‘Fingerprint type’ drop-
down, but bear in mind that this format is less secure and should be avoided for comparison
purposes where possible.

If some of the keys loaded into Pageant have certificates attached, then Pageant will default
to showing the fingerprint of the underlying key. This way, a certified and uncertified
version of the same key will have the same fingerprint, so you can see that they match.
You can instead use the ‘Fingerprint type’ drop-down to ask for a different fingerprint to
be shown for certified keys, which includes the certificate as part of the fingerprinted data.
That way you can tell two certificates apart.

• The comment attached to the key.

• The state of deferred decryption, if enabled for this key. See section 9.5.

9.2.2 The ‘Add Key’ button

To add a key to Pageant by reading it out of a local disk file, press the ‘Add Key’ button in the
Pageant main window, or alternatively right-click on the Pageant icon in the system tray and
select ‘Add Key’ from there.

Pageant will bring up a file dialog, labelled ‘Select Private Key File’. Find your private key file
in this dialog, and press ‘Open’. If you want to add more than one key at once, you can select
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multiple files using Shift-click (to select several adjacent files) or Ctrl-click (to select non-
adjacent files).

Pageant will now load the private key(s). If a key is protected by a passphrase, Pageant will ask
you to type the passphrase.

(This is not the only way to add a private key to Pageant. You can also add one from a remote
system by using agent forwarding; see section 9.4 for details.)

9.2.3 The ‘Remove Key’ button

If you need to remove a key from Pageant, select that key in the list box, and press the ‘Remove
Key’ button. Pageant will remove the key from its memory.

You can apply this to keys you added using the ‘Add Key’ button, or to keys you added remotely
using agent forwarding (see section 9.4); it makes no difference.

9.3 The Pageant command line
Pageant can be made to do things automatically when it starts up, by specifying instructions on
its command line. If you're starting Pageant from the Windows GUI, you can arrange this by
editing the properties of the Windows shortcut that it was started from.

If Pageant is already running, invoking it again with the options below causes actions to be
performed with the existing instance, not a new one.

9.3.1 Making Pageant automatically load keys on startup

Pageant can automatically load one or more private keys when it starts up, if you provide them
on the Pageant command line. Your command line might then look like:

C:\PuTTY\pageant.exe d:\main.ppk d:\secondary.ppk

If the keys are stored encrypted, Pageant will request the passphrases on startup.

If Pageant is already running, this syntax loads keys into the existing Pageant.

You can specify the ‘--encrypted ’ option to defer decryption of these keys; see section 9.5.

9.3.2 Making Pageant run another program

You can arrange for Pageant to start another program once it has initialised itself and loaded any
keys specified on its command line. This program (perhaps a PuTTY, or a WinCVS making use
of Plink, or whatever) will then be able to use the keys Pageant has loaded.

You do this by specifying the-c option followed by the command, like this:

C:\PuTTY\pageant.exe d:\main.ppk -c C:\PuTTY\putty.exe

9.3.3 Integrating with Windows OpenSSH

Windows's own port of OpenSSH uses the same mechanism as Pageant to talk to its SSH agent
(Windows named pipes). This means that Windows OpenSSH can talk directly to Pageant, if it
knows where to find Pageant's named pipe.

When Pageant starts up, it can optionally write out a file containing an OpenSSH configuration
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directive that tells the Windowsssh.exe where to find Pageant. If you include this file from
your Windows SSH configuration, thenssh.exe should automatically use Pageant as its agent,
so that you can keep your keys in one place and have both SSH clients able to use them.

The option is--openssh-config , and you follow it with a filename.

To refer to this file from your main OpenSSH configuration, you can use the ‘Include ’
directive. For example, you might run Pageant like this (with your own username substituted,
of course):

pageant --openssh-config C:\Users\Simon\.ssh\pageant.conf

and then add a directive like this to your main ‘.ssh\config ’ file (assuming that lives in the
same directory that you just putpageant.conf ):

Include pageant.conf

Note: this technique only works withWindows's port of OpenSSH, which lives at
C:\Windows\System32\OpenSSH\ssh.exe if you have it installed. (If not, it can be
installed as a Windows optional feature, e.g., via Settings > Apps & features > Optional features
> Add a feature > OpenSSH Client.)

There are other versions of OpenSSH for Windows, notably the one that comes with Windows
git . Those will likely not work with the same configuration, because they tend to depend on
Unix emulation layers like MinGW or MSys, so they won't speak Windows native pathname
syntax or understand named pipes. The above instructions will only work with Windows's own
version of OpenSSH.

So, if you want to use Windowsgit with an SSH key held in Pageant, you'll have to set
the environment variableGIT_SSH, to point at a different program. You could point it at
c:\Windows\System32\OpenSSH\ssh.exe once you've done this setup – but it's just
as easy to point it at Plink!

9.3.4 Unix-domain sockets: integrating with WSL 1

Pageant can listen on the WinSock implementation of ‘Unix-domain sockets’. These
interoperate with the Unix-domain sockets found in the original Windows Subsystem for Linux
(now known as WSL 1). So if you ask Pageant to listen on one of these, then your WSL 1
processes can talk directly to Pageant.

To configure this, run Pageant with the option--unix , followed with a pathname. Then, in
WSL 1, set the environment variableSSH_AUTH_SOCKto point at the WSL translation of that
pathname.

For example, you might run

pageant --unix C:\Users\Simon\.ssh\agent.sock

and in WSL 1, set the environment variable

SSH_AUTH_SOCK=/mnt/c/Users/Simon/.ssh/agent.sock

Alternatively, you can add a line to your.ssh/config file inside WSL that says

IdentityAgent /mnt/c/Users/Simon/.ssh/agent.sock
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although doing it like that may mean thatssh-add commands won't find the agent, even though
ssh itself will.

Security note: Unix-domain sockets are protected against access by other users by the file
protections on their containing directory. So if your Windows machine is multiuser, make sure
you create the socket inside a directory that other users can't access at all. (In fact, that's a good
idea on general principles.)

Compatibility note : WSL 2 processes cannot talk to Pageant by this mechanism, because WSL
2's Unix-domain sockets are managed by a separate Linux kernel, and not by the same kernel
that WinSock talks to.

9.3.5 Starting with the key list visible

Start Pageant with the--keylist option to show the main window as soon as it starts up.

9.3.6 Restricting the Windows process ACL

Pageant supports the same-restrict-acl option as the other PuTTY utilities to lock down
the Pageant process's access control; see section 3.11.3.28 for why you might want to do this.

By default, if Pageant is started with-restrict-acl , it won't pass this to any PuTTY
sessions started from its System Tray submenu. Use-restrict-putty-acl to change this.
(Again, see section 3.11.3.28 for details.)

9.4 Using agent forwarding
Agent forwarding is a mechanism that allows applications on your SSH server machine to talk
to the agent on your client machine.

Note that at present, whether agent forwarding in SSH-2 is available depends on your server.
Pageant's protocol is compatible with the OpenSSH server, but thessh.com server uses a
different agent protocol, which PuTTY does not yet support.

To enable agent forwarding, first start Pageant. Then set up a PuTTY SSH session in
which ‘Allow agent forwarding’ is enabled (see section 4.21.7). Open the session as normal.
(Alternatively, you can use the-A command line option; see section 3.11.3.10 for details.)

If this has worked, your applications on the server should now have access to a Unix domain
socket which the SSH server will forward back to PuTTY, and PuTTY will forward on to the
agent. To check that this has actually happened, you can try this command on Unix server
machines:

unixbox:~$ echo $SSH_AUTH_SOCK
/tmp/ssh-XXNP18Jz/agent.28794
unixbox:~$

If the result line comes up blank, agent forwarding has not been enabled at all.

Now if you runssh on the server and use it to connect through to another server that accepts
one of the keys in Pageant, you should be able to log in without a password:

unixbox:~$ ssh -v otherunixbox
[...]
debug: next auth method to try is publickey
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debug: userauth_pubkey_agent: trying agent key my-putty-key
debug: ssh-userauth2 successful: method publickey
[...]

If you enable agent forwarding onthatSSH connection as well (see the manual for your server-
side SSH client to find out how to do this), your authentication keys will still be available on the
next machine you connect to - two SSH connections away from where they're actually stored.

In addition, if you have a private key on one of the SSH servers, you can send it all the way back
to Pageant using the localssh-add command:

unixbox:~$ ssh-add ~/.ssh/id_rsa
Need passphrase for /home/fred/.ssh/id_rsa
Enter passphrase for /home/fred/.ssh/id_rsa:
Identity added: /home/fred/.ssh/id_rsa (/home/simon/.ssh/id_rsa)
unixbox:~$

and then it's available to every machine that has agent forwarding available (not just the ones
downstream of the place you added it).

9.5 Loading keys without decrypting them
You can add keys to Pageantwithout decrypting them. The key file will be held in Pageant's
memory still encrypted, and when a client program first tries to use the key, Pageant will display
a dialog box prompting for the passphrase so that the key can be decrypted.

This works the same way whether the key is used by an instance of PuTTY running locally, or
a remote client connecting to Pageant through agent forwarding.

To add a key to Pageant in this encrypted form, press the ‘Add Key (encrypted)’ button in the
Pageant main window, or alternatively right-click on the Pageant icon in the system tray and
select ‘Add Key (encrypted)’ from there. Pageant will bring up a file dialog, in just the same
way as it would for the plain ‘Add Key’ button. But it won't ask for a passphrase. Instead, the
key will be listed in the main window with ‘(encrypted)’ after it.

To start Pageant up in the first place with encrypted keys loaded into it, you can use the ‘--
encrypted ’ option on the command line. For example:

C:\PuTTY\pageant.exe --encrypted d:\main.ppk

After a key has been decrypted for the first use, it remains decrypted, so that it can be used
again. The main window will list the key with ‘(re-encryptable)’ after it. You can revert it to
the previous state, where a passphrase is required, using the ‘Re-encrypt’ button in the Pageant
main window.

You can also ‘re-encrypt’ all keys that were added encrypted by choosing ‘Re-encrypt All
Keys’ from the System tray menu. (Note that this doesnotdiscard cleartext keys that were not
previously added encrypted!)

CAUTION : When Pageant displays a prompt to decrypt an already-loaded key, it cannot give
keyboard focus to the prompt dialog box. As far as I know this is a deliberate defensive measure
by Windows, against malicious software. So make sure you click in the prompt window before
typing your passphrase, or else the passphrase might be sent to somewhere you didn't want to
trust with it!
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9.6 Security considerations
Using Pageant for public-key authentication gives you the convenience of being able to open
multiple SSH sessions without having to type a passphrase every time, but also gives you the
security benefit of never storing a decrypted private key on disk. Many people feel this is a good
compromise between security and convenience.

It is a compromise, however. Holding your decrypted private keys in Pageant is better than
storing them in easy-to-find disk files, but still less secure than not storing them anywhere at
all. This is for two reasons:

• Windows unfortunately provides no way to protect pieces of memory from being written
to the system swap file. So if Pageant is holding your private keys for a long period of time,
it's possible that decrypted private key data may be written to the system swap file, and an
attacker who gained access to your hard disk later on might be able to recover that data.
(However, if you stored an unencrypted key in a disk file they wouldcertainlybe able to
recover it.)

• Although, like most modern operating systems, Windows prevents programs from
accidentally accessing one another's memory space, it does allow programs to access one
another's memory space deliberately, for special purposes such as debugging. This means
that if you allow a virus, trojan, or other malicious program on to your Windows system
while Pageant is running, it could access the memory of the Pageant process, extract your
decrypted authentication keys, and send them back to its master.

Similarly, use of agentforwarding is a security improvement on other methods of one-touch
authentication, but not perfect. Holding your keys in Pageant on your Windows box has a
security advantage over holding them on the remote server machine itself (either in an agent or
just unencrypted on disk), because if the server machine ever sees your unencrypted private key
then the sysadmin or anyone who cracks the machine can steal the keys and pretend to be you
for as long as they want.

However, the sysadmin of the server machine can always pretend to be youon that machine.
So if you forward your agent to a server machine, then the sysadmin of that machine can access
the forwarded agent connection and request signatures from any of your private keys, and can
therefore log in to other machines as you. They can only do this to a limited extent - when the
agent forwarding disappears they lose the ability - but using Pageant doesn't actuallyprevent
the sysadmin (or hackers) on the server from doing this.

Therefore, if you don't trust the sysadmin of a server machine, you shouldneveruse agent
forwarding to that machine. (Of course you also shouldn't store private keys on that machine,
type passphrases into it, or log into other machines from it in any way at all; Pageant is hardly
unique in this respect.)
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Chapter 10: Common error messages

This chapter lists a number of common error messages which PuTTY and its associated tools
can produce, and explains what they mean in more detail.

We do not attempt to listall error messages here: there are many which should never occur, and
some which should be self-explanatory. If you get an error message which is not listed in this
chapter and which you don't understand, report it to us as a bug (see appendix B) and we will
add documentation for it.

10.1 ‘The host key is not cached for this server’
This error message occurs when PuTTY connects to a new SSH server. Every server identifies
itself by means of a host key; once PuTTY knows the host key for a server, it will be able to
detect if a malicious attacker redirects your connection to another machine.

If you see this message, it means that PuTTY has not seen this host key before, and has no way of
knowing whether it is correct or not. You should attempt to verify the host key by other means,
such as asking the machine's administrator.

If you see this message and you know that your installation of PuTTYhasconnected to the same
server before, it may have been recently upgraded to SSH protocol version 2. SSH protocols
1 and 2 use separate host keys, so when you first use SSH-2 with a server you have only used
SSH-1 with before, you will see this message again. You should verify the correctness of the
key as before.

See section 2.2 for more information on host keys.

10.2 ‘WARNING - POTENTIAL SECURITY BREACH!’
This message, followed by ‘The server's host key does not match the one PuTTY has cached
for this server’, means that PuTTY has connected to the SSH server before, knows what its host
keyshouldbe, but has found a different one.

(If the message instead talks about a ‘certified host key’, see instead section 10.3.)

This may mean that a malicious attacker has replaced your server with a different one, or has
redirected your network connection to their own machine. On the other hand, it may simply
mean that the administrator of your server has accidentally changed the key while upgrading
the SSH software; thisshouldn'thappen but it is unfortunately possible.

You should contact your server's administrator and see whether they expect the host key to have
changed. If so, verify the new host key in the same way as you would if it was new.

See section 2.2 for more information on host keys.
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10.3 ‘This server presented a certified host key which was signed
by a different certification authority ...’
If you've configured PuTTY to trust at least one certification authority for signing host keys (see
section 4.19.4), then it will ask the SSH server to send it any available certified host keys. If the
server sends back a certified key signed by adifferentcertification authority, PuTTY will present
this variant of the host key prompt, preceded by ‘WARNING - POTENTIAL SECURITY
BREACH!’

One reason why this can happen is a deliberate attack. Just like an ordinary man-in-the-middle
attack which substitutes a wrong host key, a particularly ambitious attacker might substitute an
entire wrong certification authority, and hope that you connect anyway.

But it's also possible in some situations that this error might arise legitimately. For example, if
your organisation's IT department has just rolled out a new CA key which you haven't yet entered
in PuTTY's configuration, or if your CA configuration involves two overlapping domains, or
something similar.

So, unfortunately, you'll have to work out what to do about it yourself: make an exception for
this specific case, or abandon this connection and install a new CA key before trying again (if
you're really sure you trust the CA), or edit your configuration in some other way, or just stop
trying to use this server.

If you're convinced that this particular server is legitimate even though the CA is not one you
trust, PuTTY will let you cache the certified host key, treating it in the same way as an uncertified
one. Then that particular certificate will be accepted for future connections to this specific server,
even though other certificates signed by the same CA will still be rejected.

10.4 ‘SSH protocol version 2 required by our configuration but
remote only provides (old, insecure) SSH-1’
By default, PuTTY only supports connecting to SSH servers that implement SSH protocol
version 2. If you see this message, the server you're trying to connect to only supports the older
SSH-1 protocol.

If the server genuinely only supports SSH-1, then you need to either change the ‘SSH protocol
version’ setting (see section 4.17.4), or use the-1 command-line option; in any case, you should
not treat the resulting connection as secure.

You might start seeing this message with new versions of PuTTY (from 0.68 onwards) where
you didn't before, because it used to be possible to configure PuTTY to automatically fall back
from SSH-2 to SSH-1. This is no longer supported, to prevent the possibility of a downgrade
attack.

10.5 ‘The first cipher supported by the server is ... below the
configured warning threshold’
This occurs when the SSH server does not offer any ciphers which you have configured PuTTY
to consider strong enough. By default, PuTTY puts up this warning only for Blowfish, single-
DES, and Arcfour encryption.

See section 4.20 for more information on this message.
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(There are similar messages for other cryptographic primitives, such as host key algorithms.)

10.6 ‘Remote side sent disconnect message type 2 (protocol
error): "Too many authentication failures for root"’

This message is produced by an OpenSSH (or Sun SSH) server if it receives more failed
authentication attempts than it is willing to tolerate.

This can easily happen if you are using Pageant and have a large number of keys loaded into
it, since these servers count each offer of a public key as an authentication attempt. This can
be worked around by specifying the key that's required for the authentication in the PuTTY
configuration (see section 4.22.1); PuTTY will ignore any other keys Pageant may have, but
will ask Pageant to do the authentication, so that you don't have to type your passphrase.

On the server, this can be worked around by disabling public-key authentication or (for Sun
SSH only) by increasingMaxAuthTries in sshd_config .

10.7 ‘Out of memory’

This occurs when PuTTY tries to allocate more memory than the system can give it. This
mayhappen for genuine reasons: if the computer really has run out of memory, or if you have
configured an extremely large number of lines of scrollback in your terminal. PuTTY is not able
to recover from running out of memory; it will terminate immediately after giving this error.

However, this error can also occur when memory is not running out at all, because PuTTY
receives data in the wrong format. In SSH-2 and also in SFTP, the server sends the length of each
message before the message itself; so PuTTY will receive the length, try to allocate space for the
message, and then receive the rest of the message. If the length PuTTY receives is garbage, it
will try to allocate a ridiculous amount of memory, and will terminate with an ‘Out of memory’
error.

This can happen in SSH-2, if PuTTY and the server have not enabled encryption in the same
way (see question A.7.3 in the FAQ).

This can also happen in PSCP or PSFTP, if your login scripts on the server generate output:
the client program will be expecting an SFTP message starting with a length, and if it receives
some text from your login scripts instead it will try to interpret them as a message length. See
question A.7.4 for details of this.

10.8 ‘Internal error’, ‘Internal fault’, ‘Assertion failed’

Any error beginning with the word ‘Internal’ shouldneveroccur. If it does, there is a bug in
PuTTY by definition; please see appendix B and report it to us.

Similarly, any error message starting with ‘Assertion failed’ is a bug in PuTTY. Please report it
to us, and include the exact text from the error message box.

10.9 ‘Unable to use key file’, ‘Couldn't load private key’, ‘Couldn't
load this key’

Various forms of this error are printed in the PuTTY window, or written to the PuTTY Event Log
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(see section 3.1.3.1) when trying public-key authentication, or given by Pageant when trying to
load a private key.

If you see one of these messages, it often indicates that you've tried to load a key of an
inappropriate type into PuTTY, Plink, PSCP, PSFTP, or Pageant.

You may have tried to load an SSH-2 key in a ‘foreign’ format (OpenSSH orssh.com ) directly
into one of the PuTTY tools, in which case you need to import it into PuTTY's native format
(*.PPK ) using PuTTYgen – see section 8.2.15.

Alternatively, you may have specified a key that's inappropriate for the connection you're
making. The SSH-2 and the old SSH-1 protocols require different private key formats, and a
SSH-1 key can't be used for a SSH-2 connection (or vice versa).

10.10 ‘Server refused our key’, ‘Server refused our public key’, ‘Key
refused’

Various forms of this error are printed in the PuTTY window, or written to the PuTTY Event
Log (see section 3.1.3.1) when trying public-key authentication.

If you see one of these messages, it means that PuTTY has sent a public key to the server and
offered to authenticate with it, and the server has refused to accept authentication. This usually
means that the server is not configured to accept this key to authenticate this user.

This is almost certainly not a problem with PuTTY. If you see this type of message, the first thing
you should do is check yourserverconfiguration carefully. Common errors include having the
wrong permissions or ownership set on the public key or the user's home directory on the server.
Also, read the PuTTY Event Log; the server may have sent diagnostic messages explaining
exactly what problem it had with your setup.

Section 8.3 has some hints on server-side public key setup.

10.11 ‘Access denied’, ‘Authentication refused’

Various forms of this error are printed in the PuTTY window, or written to the PuTTY Event
Log (see section 3.1.3.1) during authentication.

If you see one of these messages, it means that the server has refused all the forms of
authentication PuTTY has tried and it has no further ideas.

It may be worth checking the Event Log for diagnostic messages from the server giving more
detail.

This error can be caused by buggy SSH-1 servers that fail to cope with the various strategies
we use for camouflaging passwords in transit. Upgrade your server, or use the workarounds
described in section 4.27.13 and possibly section 4.27.14.

10.12 ‘No supported authentication methods available’

This error indicates that PuTTY has run out of ways to authenticate you to an SSH server. This
may be because PuTTY has TIS or keyboard-interactive authentication disabled, in which case
see section 4.21.5 and section 4.21.6.
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10.13 ‘Incorrect MAC received on packet’ or ‘Incorrect CRC
received on packet’
This error occurs when PuTTY decrypts an SSH packet and its checksum is not correct. This
probably means something has gone wrong in the encryption or decryption process. It's difficult
to tell from this error message whether the problem is in the client, in the server, or in between.

In particular, if the network is corrupting data at the TCP level, it may only be obvious with
cryptographic protocols such as SSH, which explicitly check the integrity of the transferred
data and complain loudly if the checks fail. Corruption of protocols without integrity protection
(such as HTTP) will manifest in more subtle failures (such as misdisplayed text or images in a
web browser) which may not be noticed.

Occasionally this has been caused by server bugs. An example is the bug described at section
4.27.10, although you're very unlikely to encounter that one these days.

In this context MAC stands for Message Authentication Code. It's a cryptographic term, and
it has nothing at all to do with Ethernet MAC (Media Access Control) addresses, or with the
Apple computer.

10.14 ‘Incoming packet was garbled on decryption’
This error occurs when PuTTY decrypts an SSH packet and the decrypted data makes no sense.
This probably means something has gone wrong in the encryption or decryption process. It's
difficult to tell from this error message whether the problem is in the client, in the server, or in
between.

If you get this error, one thing you could try would be to fiddle with the setting of ‘Miscomputes
SSH-2 encryption keys’ (see section 4.27.12) or ‘Ignores SSH-2 maximum packet size’ (see
section 4.27.5) on the Bugs panel.

10.15 ‘PuTTY X11 proxy: various errors ’
This family of errors are reported when PuTTY is doing X forwarding. They are sent back to
the X application running on the SSH server, which will usually report the error to the user.

When PuTTY enables X forwarding (see section 3.4) it creates a virtual X display running on
the SSH server. This display requires authentication to connect to it (this is how PuTTY prevents
other users on your server machine from connecting through the PuTTY proxy to your real X
display). PuTTY also sends the server the details it needs to enable clients to connect, and the
server should put this mechanism in place automatically, so your X applications should just
work.

A common reason why people see one of these messages is because they used SSH to log in as
one user (let's say ‘fred’), and then used the Unixsu command to become another user (typically
‘root’). The original user, ‘fred’, has access to the X authentication data provided by the SSH
server, and can run X applications which are forwarded over the SSH connection. However,
the second user (‘root’) does not automatically have the authentication data passed on to it, so
attempting to run an X application as that user often fails with this error.

If this happens,it is not a problem with PuTTY. You need to arrange for your X authentication
data to be passed from the user you logged in as to the user you usedsu to become. How you do
this depends on your particular system; in fact many modern versions ofsu do it automatically.
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10.16 ‘Network error: Software caused connection abort’
This is a generic error produced by the Windows network code when it kills an established
connection for some reason. For example, it might happen if you pull the network cable out
of the back of an Ethernet-connected computer, or if Windows has any other similar reason to
believe the entire network has become unreachable.

Windows also generates this error if it has given up on the machine at the other end of the
connection ever responding to it. If the network between your client and server goes down and
your client then tries to send some data, Windows will make several attempts to send the data
and will then give up and kill the connection. In particular, this can occur even if you didn't type
anything, if you are using SSH-2 and PuTTY attempts a key re-exchange. (See section 4.18.2
for more about key re-exchange.)

(It can also occur if you are using keepalives in your connection. Other people have reported
that keepalivesfix this error for them. See section 4.14.1 for a discussion of the pros and cons
of keepalives.)

We are not aware of any reason why this error might occur that would represent a bug in PuTTY.
The problem is between you, your Windows system, your network and the remote system.

10.17 ‘Network error: Connection reset by peer’
This error occurs when the machines at each end of a network connection lose track of the state
of the connection between them. For example, you might see it if your SSH server crashes, and
manages to reboot fully before you next attempt to send data to it.

However, the most common reason to see this message is if you are connecting through a firewall
or a NAT router which has timed the connection out. See question A.7.8 in the FAQ for more
details. You may be able to improve the situation by using keepalives; see section 4.14.1 for
details on this.

Note that Windows can produce this error in some circumstances without seeing a connection
reset from the server, for instance if the connection to the network is lost.

10.18 ‘Network error: Connection refused’
This error means that the network connection PuTTY tried to make to your server was rejected
by the server. Usually this happens because the server does not provide the service which PuTTY
is trying to access.

Check that you are connecting with the correct protocol (SSH, Telnet, etc), and check that the
port number is correct. If that fails, consult the administrator of your server.

10.19 ‘Network error: Connection timed out’
This error means that the network connection PuTTY tried to make to your server received no
response at all from the server. Usually this happens because the server machine is completely
isolated from the network, or because it is turned off.

Check that you have correctly entered the host name or IP address of your server machine. If
that fails, consult the administrator of your server.

Unix also generates this error when it tries to send data down a connection and contact with the

152



server has been completely lost during a connection. (There is a delay of minutes before Unix
gives up on receiving a reply from the server.) This can occur if you type things into PuTTY
while the network is down, but it can also occur if PuTTY decides of its own accord to send
data: due to a repeat key exchange in SSH-2 (see section 4.18.2) or due to keepalives (section
4.14.1).

10.20 ‘Network error: Cannot assign requested address’
This means that the operating system rejected the parameters of the network connection PuTTY
tried to make, usually without actually trying to connect to anything, because they were simply
invalid.

A common way to provoke this error is to accidentally try to connect to port 0, which is not a
valid port number.
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Appendix A: PuTTY FAQ

This FAQ is published on the PuTTY web site, and also provided as an appendix in the manual.

A.1 Introduction

A.1.1 What is PuTTY?

PuTTY is a client program for the SSH, Telnet, Rlogin, and SUPDUP network protocols.

These protocols are all used to run a remote session on a computer, over a network. PuTTY
implements the client end of that session: the end at which the session is displayed, rather than
the end at which it runs.

In really simple terms: you run PuTTY on a Windows machine, and tell it to connect to (for
example) a Unix machine. PuTTY opens a window. Then, anything you type into that window
is sent straight to the Unix machine, and everything the Unix machine sends back is displayed
in the window. So you can work on the Unix machine as if you were sitting at its console, while
actually sitting somewhere else.

A.2 Features supported in PuTTY

In general, if you want to know if PuTTY supports a particular feature, you should look for it
on the PuTTY web site. In particular:

• try the changes page, and see if you can find the feature on there. If a feature is listed there,
it's been implemented. If it's listed as a change madesincethe latest version, it should be
available in the development snapshots, in which case testing will be very welcome.

• try the Wishlist page, and see if you can find the feature there. If it's on there, and not in
the ‘Recently fixed’ section, it probablyhasn'tbeen implemented.

A.2.1 Does PuTTY support SSH-2?

Yes. SSH-2 support has been available in PuTTY since version 0.50 in 2000.

Public key authentication (both RSA and DSA) in SSH-2 was new in version 0.52 in 2002.

A.2.2 Does PuTTY support reading OpenSSH or ssh.com SSH-2 private key
files?

PuTTY doesn't support this natively (see the wishlist entry for reasons why not), but as of 0.53
PuTTYgen can convert both OpenSSH andssh.com private key files into PuTTY's format.
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A.2.3 Does PuTTY support SSH-1?

Yes. SSH-1 support has always been available in PuTTY.

However, the SSH-1 protocol has many weaknesses and is no longer considered secure; you
should use SSH-2 instead if at all possible.

As of 0.68, PuTTY will no longer fall back to SSH-1 if the server doesn't appear to support
SSH-2; you must explicitly ask for SSH-1.

A.2.4 Does PuTTY support local echo?

Yes. Version 0.52 has proper support for local echo.

In version 0.51 and before, local echo could not be separated from local line editing (where you
type a line of text locally, and it is not sent to the server until you press Return, so you have
the chance to edit it and correct mistakesbeforethe server sees it). New in version 0.52, local
echo and local line editing are separate options, and by default PuTTY will try to determine
automatically whether to enable them or not, based on which protocol you have selected and
also based on hints from the server. If you have a problem with PuTTY's default choice, you
can force each option to be enabled or disabled as you choose. The controls are in the Terminal
panel, in the section marked ‘Line discipline options’.

A.2.5 Does PuTTY support storing settings, so I don't have to change them
every time?

Yes, all of PuTTY's settings can be saved in named session profiles. You can also change the
default settings that are used for new sessions. See section 4.1.2 in the documentation for how
to do this.

A.2.6 Does PuTTY support storing its settings in a disk file?

Not at present, although section 4.33 in the documentation gives a method of achieving the same
effect.

A.2.7 Does PuTTY support full-screen mode, like a DOS box?

Yes; this was added in version 0.52, in 2002.

A.2.8 Does PuTTY have the ability to remember my password so I don't have
to type it every time?

No, it doesn't.

Remembering your password is a bad plan for obvious security reasons: anyone who gains
access to your machine while you're away from your desk can find out the remembered
password, and use it, abuse it or change it.

In addition, it's not evenpossiblefor PuTTY to automatically send your password in a Telnet
session, because Telnet doesn't give the client software any indication of which part of the
login process is the password prompt. PuTTY would have to guess, by looking for words like
‘password’ in the session data; and if your login program is written in something other than
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English, this won't work.

In SSH, remembering your password would be possible in theory, but there doesn't seem to
be much point since SSH supports public key authentication, which is more flexible and more
secure. See chapter 8 in the documentation for a full discussion of public key authentication.

A.2.9 Is there an option to turn off the annoying host key prompts?

No, there isn't. And there won't be. Even if you write it yourself and send us the patch, we won't
accept it.

Those annoying host key prompts are thewhole point of SSH. Without them, all the
cryptographic technology SSH uses to secure your session is doing nothing more than making
an attacker's job slightly harder; instead of sitting between you and the server with a packet
sniffer, the attacker must actually subvert a router and start modifying the packets going back
and forth. But that's not all that much harder than just sniffing; and without host key checking,
it will go completely undetected by client or server.

Host key checking is your guarantee that the encryption you put on your data at the client end
is thesameencryption taken off the data at the server end; it's your guarantee that it hasn't
been removed and replaced somewhere on the way. Host key checking makes the attacker's job
astronomicallyhard, compared to packet sniffing, and even compared to subverting a router.
Instead of applying a little intelligence and keeping an eye on oss-security, the attacker must
now perform a brute-force attack against at least one military-strength cipher. That insignificant
host key prompt really does makethatmuch difference.

If you're having a specific problem with host key checking - perhaps you want an automated
batch job to make use of PSCP or Plink, and the interactive host key prompt is hanging the batch
process - then the right way to fix it is to add the correct host key to the Registry in advance,
or if the Registry is not available, to use the-hostkey command-line option. That way, you
retain theimportantfeature of host key checking: the right key will be accepted and the wrong
ones will not. Adding an option to turn host key checking off completely is the wrong solution
and we will not do it.

If you have host keys available in the commonknown_hosts format, we have a script called
kh2reg.py to convert them to a Windows .REG file, which can be installed ahead of time by
double-clicking or usingREGEDIT.

A.2.10 Will you write an SSH server for the PuTTY suite, to go with the client?

Not one that you'd want to use.

While much of the protocol and networking code can be made common between a client
and server, to make ausefulgeneral-purpose server requires all sorts of fiddly new code like
interacting with OS authentication databases and the like.

A special-purpose SSH server (called Uppity) can now be built from the PuTTY source code,
and indeed it is not usable as a general-purpose server; it exists mainly as a test harness.

If someone else wants to use this as a basis for writing a general-purpose SSH server, they'd be
perfectly welcome to of course; but we don't have time, and we don't have motivation. The code
is available if anyone else wants to try it.
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A.2.11 Can PSCP or PSFTP transfer files in ASCII mode?

Unfortunately not.

This was a limitation of the file transfer protocols as originally specified: the SCP and SFTP
protocols had no notion of transferring a file in anything other than binary mode. (This is still
true of SCP.)

The current draft protocol spec of SFTP proposes a means of implementing ASCII transfer. At
some point PSCP/PSFTP may implement this proposal.

A.3 Ports to other operating systems
The eventual goal is for PuTTY to be a multi-platform program, able to run on at least Windows,
Mac OS and Unix.

PuTTY has been gaining a generalised porting layer, drawing a clear line between platform-
dependent and platform-independent code. The general intention was for this porting layer to
evolve naturally as part of the process of doing the first port; a Unix port has now been released
and the plan seems to be working so far.

A.3.1 What ports of PuTTY exist?

Currently, release versions of PuTTY tools only run on Windows systems and Unix.

As of 0.68, the supplied PuTTY executables run on versions of Windows from XP onwards, up
to and including Windows 11; and we know of no reason why PuTTY should not continue to
work on future versions of Windows. We provide 32-bit and 64-bit Windows executables for the
common x86 processor family; see question A.6.10 for discussion of the compatibility issues
around that. The 32-bit executables require a Pentium 4 or newer processor. We also provide
executables for Windows on Arm processors.

(We used to also provide executables for Windows for the Alpha processor, but stopped after
0.58 due to lack of interest.)

In the development code, a partial port to Mac OS exists (see question A.3.6).

Currently PuTTY doesnot run on Windows CE (see question A.3.4).

We do not have release-quality ports for any other systems at the present time. If anyone told
you we had an Android port, or an iOS port, or any other port of PuTTY, they were mistaken.
We don't.

There are some third-party ports to various platforms, mentioned on the Links page of our
website.

A.3.2 Is there a port to Unix?

There are Unix ports of most of the traditional PuTTY tools, and also one entirely new
application.

If you look at the source release, you should find aunix subdirectory. You needcmake to
build it; see the fileREADMEin the source distribution. This should build you:
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• Unix ports of PuTTY, Plink, PSCP, and PSFTP, which work pretty much the same as their
Windows counterparts;

• Command-line versions of PuTTYgen and Pageant, whose user interface is quite different
to the Windows GUI versions;

• pterm - anxterm -type program which supports the same terminal emulation as PuTTY.

If you don't have Gtk, you should still be able to build the command-line tools.

A.3.3 What's the point of the Unix port? Unix has OpenSSH.

All sorts of little things.pterm is directly useful to anyone who prefers PuTTY's terminal
emulation toxterm 's, which at least some people do. Unix Plink has apparently found a niche
among people who find the complexity of OpenSSL makes OpenSSH hard to install (and who
don't mind Plink not having as many features). Some users want to generate a large number of
SSH keys on Unix and then copy them all into PuTTY, and the Unix PuTTYgen should allow
them to automate that conversion process.

There were development advantages as well; porting PuTTY to Unix was a valuable path-finding
effort for other future ports, and also allowed us to use the excellent Linux tool Valgrind to help
with debugging, which has already improved PuTTY's stability onall platforms.

However, if you're a Unix user and you can see no reason to switch from OpenSSH to
PuTTY/Plink, then you're probably right. We don't expect our Unix port to be the right thing
for everybody.

A.3.4 Will there be a port to Windows CE or PocketPC?

We once did some work on such a port, but it only reached an early stage, and certainly not a
useful one. It's no longer being actively worked on.

A.3.5 Is there a port to Windows 3.1?

PuTTY is a 32-bit application from the ground up, so it won't run on Windows 3.1 as a native
16-bit program; and it would bevery hard to port it to do so, because of Windows 3.1's vile
memory allocation mechanisms.

However, it is possible in theory to compile the existing PuTTY source in such a way that it
will run under Win32s (an extension to Windows 3.1 to let you run 32-bit programs). In order
to do this you'll need the right kind of C compiler - modern versions of Visual C at least have
stopped being backwards compatible to Win32s. Also, the last time we tried this it didn't work
very well.

A.3.6 Will there be a port to the Mac?

We hope so!

We attempted one around 2005, written as a native Cocoa application, but it turned out to be
very slow to redraw its window for some reason we never got to the bottom of.

In 2015, after porting the GTK front end to work with GTK 3, we began another attempt based
on making small changes to the GTK code and building it against the OS X Quartz version of
GTK 3. This doesn't seem to have the window redrawing problem any more, so it's already got
further than the last effort, but it is still substantially unfinished.

158

http://valgrind.kde.org/


If any OS X and/or GTK programming experts are keen to have a finished version of this, we
urge them to help out with some of the remaining problems! See the TODO list inunix/main-
gtk-application.c in the source code.

A.3.7 Will there be a port to EPOC?

I hope so, but given that ports aren't really progressing very fast even on systems the developers
do already know how to program for, it might be a long time before any of us get round to
learning a new system and doing the port for that.

However, some of the work has been done by other people; see the Links page of our website
for various third-party ports.

A.3.8 Will there be a port to the iPhone?

We have no plans to write such a port ourselves; none of us has an iPhone, and developing and
publishing applications for it looks awkward and expensive.

However, there is a third-party SSH client for the iPhone and iPod Touch called pTerm, which
is apparently based on PuTTY. (This is nothing to do with our similarly-namedpterm , which
is a standalone terminal emulator for Unix systems; see question A.3.2.)

A.4 Embedding PuTTY in other programs

A.4.1 Is the SSH or Telnet code available as a DLL?

No, it isn't. It would take a reasonable amount of rewriting for this to be possible, and since the
PuTTY project itself doesn't believe in DLLs (they make installation more error-prone) none of
us has taken the time to do it.

Most of the code cleanup work would be a good thing to happen in general, so if anyone feels
like helping, we wouldn't say no.

See also the wishlist entry.

A.4.2 Is the SSH or Telnet code available as a Visual Basic component?

No, it isn't. None of the PuTTY team uses Visual Basic, and none of us has any particular need
to make SSH connections from a Visual Basic application. In addition, all the preliminary work
to turn it into a DLL would be necessary first; and furthermore, we don't even know how to write
VB components.

If someone offers to do some of this work for us, we might consider it, but unless that happens
I can't see VB integration being anywhere other than the very bottom of our priority list.

A.4.3 How can I use PuTTY to make an SSH connection from within another
program?

Probably your best bet is to use Plink, the command-line connection tool. If you can start Plink
as a second Windows process, and arrange for your primary process to be able to send data to
the Plink process, and receive data from it, through pipes, then you should be able to make SSH
connections from your program.

This is what CVS for Windows does, for example.
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A.5 Details of PuTTY's operation

A.5.1 What terminal type does PuTTY use?

For most purposes, PuTTY can be considered to be anxterm terminal.

PuTTY also supports some terminal control sequences not supported by the realxterm :
notably the Linux console sequences that reconfigure the colour palette, and the title bar control
sequences used byDECterm (which are different from thexterm ones; PuTTY supports both).

By default, PuTTY announces its terminal type to the server asxterm . If you have a problem
with this, you can reconfigure it to say something else;vt220 might help if you have trouble.

A.5.2 Where does PuTTY store its data?

On Windows, PuTTY stores most of its data (saved sessions, SSH host keys) in the Registry.
The precise location is

HKEY_CURRENT_USER\Software\SimonTatham\PuTTY

and within that area, saved sessions are stored underSessions while host keys are stored
underSshHostKeys .

PuTTY also requires a random number seed file, to improve the unpredictability of randomly
chosen data needed as part of the SSH cryptography. This is stored by default in a file called
PUTTY.RND; this is stored by default in the ‘Application Data’ directory, or failing that, one of
a number of fallback locations. If you want to change the location of the random number seed
file, you can put your chosen pathname in the Registry, at

HKEY_CURRENT_USER\Software\SimonTatham\PuTTY\RandSeedFile

You can ask PuTTY to delete all this data; see question A.8.2.

On Unix, PuTTY stores all of this data in a directory~/.putty by default.

A.5.3 Why do small PuTTY icons appear next to the login prompts?

As of PuTTY 0.71, some lines of text in the terminal window are marked with a small copy of
the PuTTY icon (as far as pixels allow).

This is to show trustworthiness. When the PuTTY icon appears next to a line of text, it indicates
that that line of text was generated by PuTTY itself, and not generated by the server and sent to
PuTTY.

Text that comes from the server does not have this icon, and we've arranged that the server should
not be able to fake it. (There's no control sequence the server can send which will make PuTTY
draw its own icon, and if the server tries to move the cursor back up to a line thatalreadyhas
an icon and overwrite the text, the icon will disappear.)

This lets you tell the difference between (for example) a legitimate prompt in which PuTTY
itself asks you for your private key passphrase, and a fake prompt in which the server tries to
send the identical text to trick you into tellingit your private key passphrase.
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A.5.4 Why has Plink started saying ‘Press Return to begin session’?

As of PuTTY 0.71, if you use Plink for an interactive SSH session, then after the login phase
has finished, it will present a final interactive prompt saying ‘Access granted. Press Return to
begin session’.

This is another defence against servers trying to mimic the real authentication prompts after the
session has started. When you pass through that prompt, you know that everything after it is
generated by the server and not by Plink itself, so any request for your private key passphrase
should be treated with suspicion.

In Plink, we can't use the defence described in section A.5.3: Plink is runningin the terminal, so
anything it can write into the terminal, the server could write in the same way after the session
starts. And we can't just print a separator line without a pause, because then the server could
simply move the cursor back up to it and overwrite it (probably with a brief flicker, but you
might easily miss that). The only robust defence anyone has come up with involves this pause.

If you trust your server not to be abusive, you can turn this off. It will also not appear in various
other circumstances where Plink can be confident it isn't necessary. See section 7.2.3.6 for
details.

A.6 HOWTO questions

A.6.1 What login name / password should I use?

This is not a question you should be askingus.

PuTTY is a communications tool, for making connections to other computers. We maintain the
tool; wedon'tadminister any computers that you're likely to be able to use, in the same way that
the people who make web browsers aren't responsible for most of the content you can view in
them. We cannot help with questions of this sort.

If you know the name of the computer you want to connect to, but don't know what login name
or password to use, you should talk to whoever administers that computer. If you don't know
who that is, see the next question for some possible ways to find out.

A.6.2 What commands can I type into my PuTTY terminal window?

Again, this is not a question you should be askingus. You need to read the manuals, or ask the
administrator, ofthe computer you have connected to.

PuTTY does not process the commands you type into it. It's only a communications tool.
It makes a connection to another computer; it passes the commands you type to that other
computer; and it passes the other computer's responses back to you. Therefore, the precise range
of commands you can use will not depend on PuTTY, but on what kind of computer you have
connected to and what software is running on it. The PuTTY team cannot help you with that.

(Think of PuTTY as being a bit like a telephone. If you phone somebody up and you don't know
what language to speak to make them understand you, it isn'tthe telephone company's job to find
that out for you. We just provide the means for you to get in touch; making yourself understood
is somebody else's problem.)

If you are unsure of where to start looking for the administrator of your server, a good place to
start might be to remember how you found out the host name in the PuTTY configuration. If
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you were given that host name by e-mail, for example, you could try asking the person who sent
you that e-mail. If your company's IT department provided you with ready-made PuTTY saved
sessions, then that IT department can probably also tell you something about what commands
you can type during those sessions. But the PuTTY maintainer team does not administer any
server you are likely to be connecting to, and cannot help you with questions of this type.

A.6.3 How can I make PuTTY start up maximised?

Create a Windows shortcut to start PuTTY from, and set it as ‘Run Maximized’.

A.6.4 How can I create a Windows shortcut to start a particular saved
session directly?

To run a PuTTY session saved under the name ‘mysession ’, create a Windows shortcut that
invokes PuTTY with a command line like

\path\name\to\putty.exe -load "mysession"

(Note: prior to 0.53, the syntax was@session . This is now deprecated and may be removed
at some point.)

A.6.5 How can I start an SSH session straight from the command line?

Use the command lineputty -ssh host.name . Alternatively, create a saved session that
specifies the SSH protocol, and start the saved session as shown in question A.6.4.

A.6.6 How do I copy and paste between PuTTY and other Windows
applications?

Copy and paste works similarly to the X Window System. You use the left mouse button to select
text in the PuTTY window. The act of selectionautomaticallycopies the text to the clipboard:
there is no need to press Ctrl-Ins or Ctrl-C or anything else. In fact, pressing Ctrl-C will send a
Ctrl-C character to the other end of your connection (just like it does the rest of the time), which
may have unpleasant effects. Theonly thing you need to do, to copy text to the clipboard, is to
select it.

To paste the clipboard contents into a PuTTY window, by default you click the right mouse
button. If you have a three-button mouse and are used to X applications, you can configure
pasting to be done by the middle button instead, but this is not the default because most Windows
users don't have a middle button at all.

You can also paste by pressing Shift-Ins.

A.6.7 How do I use all PuTTY's features (public keys, proxying, cipher
selection, etc.) in PSCP, PSFTP and Plink?

Most major features (e.g., public keys, port forwarding) are available through command line
options. See section 3.11.3.

Not all features are accessible from the command line yet, although we'd like to fix this. In the
meantime, you can use most of PuTTY's features if you create a PuTTY saved session, and then
use the name of the saved session on the command line in place of a hostname. This works for
PSCP, PSFTP and Plink (but don't expect port forwarding in the file transfer applications!).
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A.6.8 How do I use PSCP.EXE? When I double-click it gives me a command
prompt window which then closes instantly.

PSCP is a command-line application, not a GUI application. If you run it without arguments, it
will simply print a help message and terminate.

To use PSCP properly, run it from a Command Prompt window. See chapter 5 in the
documentation for more details.

A.6.9 How do I use PSCP to copy a file whose name has spaces in?

If PSCP is using the newer SFTP protocol (which is usual with most modern servers), this is
straightforward; all filenames with spaces in are specified using a single pair of quotes in the
obvious way:

pscp "local file" user@host:
pscp user@host:"remote file" .

However, if PSCP is using the older SCP protocol for some reason, things are more confusing.
If you're specifying a file at the local end, you just use one set of quotes as you would normally
do:

pscp "local filename with spaces" user@host:
pscp user@host:myfile "local filename with spaces"

But if the filename you're specifying is on theremoteside, you have to use backslashes and two
sets of quotes:

pscp user@host:"\"remote filename with spaces\"" local_filename
pscp local_filename user@host:"\"remote filename with spaces\""

Worse still, in a remote-to-local copy you have to specify the local file name explicitly, otherwise
PSCP will complain that they don't match (unless you specified the-unsafe option). The
following command will give an error message:

c:\>pscp user@host:"\"oo er\"" .
warning: remote host tried to write to a file called 'oo er'
         when we requested a file called '"oo er"'.

Instead, you need to specify the local file name in full:

c:\>pscp user@host:"\"oo er\"" "oo er"

A.6.10 Should I run the 32-bit or the 64-bit version?

If you're not sure, the 32-bit version is generally the safe option. It will run perfectly well on all
processors and on all versions of Windows that PuTTY supports. PuTTY doesn't require to run
as a 64-bit application to work well, and having a 32-bit PuTTY on a 64-bit system isn't likely
to cause you any trouble.

The 64-bit version (first released in 0.68) will only run if you have a 64-bit processoranda 64-
bit edition of Windows (both of these things are likely to be true of any recent Windows PC).
It will run somewhat faster (in particular, the cryptography will be faster, especially during link
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setup), but it will consume slightly more memory.

If you need to use an external DLL for GSSAPI authentication, that DLL may only be available
in a 32-bit or 64-bit form, and that will dictate the version of PuTTY you need to use. (You will
probably know if you're doing this; see section 4.23.2 in the documentation.)

A.7 Troubleshooting

A.7.1 Why do I see ‘Fatal: Protocol error: Expected control record’ in PSCP?

This happens because PSCP was expecting to see data from the server that was part of the PSCP
protocol exchange, and instead it saw data that it couldn't make any sense of at all.

This almost always happens because the startup scripts in your account on the server machine
are generating output. This is impossible for PSCP, or any other SCP client, to work around.
You should never use startup files (.bashrc , .cshrc and so on) which generate output in
non-interactive sessions.

This is not actually a PuTTY problem. If PSCP fails in this way, then all other SCP clients are
likely to fail in exactly the same way. The problem is at the server end.

A.7.2 I clicked on a colour in the Colours panel, and the colour didn't change
in my terminal.

That isn't how you're supposed to use the Colours panel.

During the course of a session, PuTTY potentially usesall the colours listed in the Colours
panel. It's not a question of using only one of them and you choosing which one; PuTTY will
use themall. The purpose of the Colours panel is to let you adjust the appearance of all the
colours. So to change the colour of the cursor, for example, you would select ‘Cursor Colour’,
press the ‘Modify’ button, and select a new colour from the dialog box that appeared. Similarly,
if you want your session to appear in green, you should select ‘Default Foreground’ and press
‘Modify’. Clicking on ‘ANSI Green’ won't turn your session green; it will only allow you to
adjust theshadeof green used when PuTTY is instructed by the server to display green text.

A.7.3 After trying to establish an SSH-2 connection, PuTTY says ‘Out of
memory’ and dies.

If this happens just while the connection is starting up, this often indicates that for some reason
the client and server have failed to establish a session encryption key. Somehow, they have
performed calculations that should have given each of them the same key, but have ended up with
different keys; so data encrypted by one and decrypted by the other looks like random garbage.

This causes an ‘out of memory’ error because the first encrypted data PuTTY expects to see
is the length of an SSH message. Normally this will be something well under 100 bytes. If
the decryption has failed, PuTTY will see a completely random length in the region of two
gigabytes, and will try to allocate enough memory to store this non-existent message. This will
immediately lead to it thinking it doesn't have enough memory, and panicking.

If this happens to you, it is quite likely to still be a PuTTY bug and you should report it (although
it might be a bug in your SSH server instead); but it doesn't necessarily mean you've actually
run out of memory.
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A.7.4 When attempting a file transfer, either PSCP or PSFTP says ‘Out of
memory’ and dies.

This is almost always caused by your login scripts on the server generating output. PSCP or
PSFTP will receive that output when they were expecting to see the start of a file transfer
protocol, and they will attempt to interpret the output as file-transfer protocol. This will usually
lead to an ‘out of memory’ error for much the same reasons as given in question A.7.3.

This is a setup problem in your account on your server,not a PSCP/PSFTP bug. Your login
scripts shouldnevergenerate output during non-interactive sessions; secure file transfer is not
the only form of remote access that will break if they do.

On Unix, a simple fix is to ensure that all the parts of your login script that might generate output
are in .profile (if you use a Bourne shell derivative) or.login (if you use a C shell).
Putting them in more general files such as.bashrc or .cshrc is liable to lead to problems.

A.7.5 PSFTP transfers files much slower than PSCP.

The throughput of PSFTP 0.54 should be much better than 0.53b and prior; we've added code to
the SFTP backend to queue several blocks of data rather than waiting for an acknowledgement
for each. (The SCP backend did not suffer from this performance issue because SCP is a much
simpler protocol.)

A.7.6 When I run full-colour applications, I see areas of black space where
colour ought to be, or vice versa.

You almost certainly need to change the ‘Use background colour to erase screen’ setting in the
Terminal panel. If there is too much black space (the commoner situation), you should enable
it, while if there is too much colour, you should disable it. (See section 4.3.5.)

In old versions of PuTTY, this was disabled by default, and would not take effect until you reset
the terminal (see question A.7.7). Since 0.54, it is enabled by default, and changes take effect
immediately.

A.7.7 When I change some terminal settings, nothing happens.

Some of the terminal options (notably Auto Wrap and background-colour screen erase) actually
represent thedefault setting, rather than the currently active setting. The server can send
sequences that modify these options in mid-session, but when the terminal is reset (by server
action, or by you choosing ‘Reset Terminal’ from the System menu) the defaults are restored.

In versions 0.53b and prior, if you change one of these options in the middle of a session, you
will find that the change does not immediately take effect. It will only take effect once you reset
the terminal.

In version 0.54, the behaviour has changed - changes to these settings take effect immediately.

A.7.8 My PuTTY sessions unexpectedly close after they are idle for a while.

Some types of firewall, and almost any router doing Network Address Translation (NAT, also
known as IP masquerading), will forget about a connection through them if the connection does
nothing for too long. This will cause the connection to be rudely cut off when contact is resumed.
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You can try to combat this by telling PuTTY to sendkeepalives: packets of data which have no
effect on the actual session, but which reassure the router or firewall that the network connection
is still active and worth remembering about.

Keepalives don't solve everything, unfortunately; although they cause greater robustness against
this sort of router, they can also cause alossof robustness against network dropouts. See section
4.14.1 in the documentation for more discussion of this.

A.7.9 PuTTY's network connections time out too quickly when network
connectivity is temporarily lost.

This is a Windows problem, not a PuTTY problem. The timeout value can't be set on per
application or per session basis. To increase the TCP timeout globally, you need to tinker with
the Registry.

On Windows 95, 98 or ME, the registry key you need to create or change is

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\VxD\
  MSTCP\MaxDataRetries

(it must be of type DWORD in Win95, or String in Win98/ME). (See MS Knowledge Base
article 158474 for more information.)

On Windows NT, 2000, or XP, the registry key to create or change is

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\
  Parameters\TcpMaxDataRetransmissions

and it must be of type DWORD. (See MS Knowledge Base articles 120642 and 314053 for more
information.)

Set the key's value to something like 10. This will cause Windows to try harder to keep
connections alive instead of abandoning them.

A.7.10 When I cat a binary file, I get ‘PuTTYPuTTYPuTTY’ on my command
line.

Don't do that, then.

This is designed behaviour; when PuTTY receives the character Control-E from the remote
server, it interprets it as a request to identify itself, and so it sends back the string ‘PuTTY’ as
if that string had been entered at the keyboard. Control-E should only be sent by programs that
are prepared to deal with the response. Writing a binary file to your terminal is likely to output
many Control-E characters, and cause this behaviour. Don't do it. It's a bad plan.

To mitigate the effects, you could configure the answerback string to be empty (see section
4.3.7); but writing binary files to your terminal is likely to cause various other unpleasant
behaviour, so this is only a small remedy.

A.7.11 When I cat a binary file, my window title changes to a nonsense
string.

Don't do that, then.

166

http://support.microsoft.com/default.aspx?scid=kb;en-us;158474
http://support.microsoft.com/default.aspx?scid=kb;en-us;120642
http://support.microsoft.com/default.aspx?scid=kb;en-us;314053


It is designed behaviour that PuTTY should have the ability to adjust the window title on
instructions from the server. Normally the control sequence that does this should only be sent
deliberately, by programs that know what they are doing and intend to put meaningful text in
the window title. Writing a binary file to your terminal runs the risk of sending the same control
sequence by accident, and cause unexpected changes in the window title. Don't do it.

A.7.12 My keyboard stops working once PuTTY displays the password
prompt.

No, it doesn't. PuTTY just doesn't display the password you type, so that someone looking at
your screen can't see what it is.

Unlike the Windows login prompts, PuTTY doesn't display the password as a row of asterisks
either. This is so that someone looking at your screen can't even tell howlong your password
is, which might be valuable information.

A.7.13 One or more function keys don't do what I expected in a server-side
application.

If you've already tried all the relevant options in the PuTTY Keyboard panel, you may need to
mail the PuTTY maintainers and ask.

It is not usually helpful just to tell us which application, which server operating system, and
which key isn't working; in order to replicate the problem we would need to have a copy of every
operating system, and every application, that anyone has ever complained about.

PuTTY responds to function key presses by sending a sequence of control characters to the
server. If a function key isn't doing what you expect, it's likely that the character sequence your
application is expecting to receive is not the same as the one PuTTY is sending. Therefore what
we really need to know iswhatsequence the application is expecting.

The simplest way to investigate this is to find some other terminal environment, in which that
function keydoeswork; and then investigate what sequence the function key is sending in that
situation. One reasonably easy way to do this on a Unix system is to type the commandcat ,
and then press the function key. This is likely to produce output of the form^[[11~ . You can
also do this in PuTTY, to find out what sequence the function key is producing in that. Then you
can mail the PuTTY maintainers and tell us ‘I wanted the F1 key to send^[[11~ , but instead
it's sendinĝ [OP , can this be done?’, or something similar.

You should still read the Feedback page on the PuTTY website (also provided as appendix B
in the manual), and follow the guidelines contained in that.

A.7.14 Why do I see ‘Couldn't load private key from ...’? Why can PuTTYgen
load my key but not PuTTY?

It's likely that you've generated an SSH protocol 2 key with PuTTYgen, but you're trying to use
it in an SSH-1 connection. SSH-1 and SSH-2 keys have different formats, and (at least in 0.52)
PuTTY's reporting of a key in the wrong format isn't optimal.

To connect using SSH-2 to a server that supports both versions, you need to change the
configuration from the default (see question A.2.1).
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A.7.15 When I'm connected to a Red Hat Linux 8.0 system, some characters
don't display properly.

A common complaint is that hyphens in man pages show up as a-acute.

With release 8.0, Red Hat appear to have made UTF-8 the default character set. There appears to
be no way for terminal emulators such as PuTTY to know this (as far as we know, the appropriate
escape sequence to switch into UTF-8 mode isn't sent).

A fix is to configure sessions to RH8 systems to use UTF-8 translation - see section 4.10.1 in the
documentation. (Note that if you use ‘Change Settings’, changes may not take place immediately
- see question A.7.7.)

If you really want to change the character set used by the server, the right place is
/etc/sysconfig/i18n , but this shouldn't be necessary.

A.7.16 Since I upgraded to PuTTY 0.54, the scrollback has stopped working
when I run screen .

PuTTY's terminal emulator has always had the policy that when the ‘alternate screen’ is in
use, nothing is added to the scrollback. This is because the usual sorts of programs which use
the alternate screen are things like text editors, which tend to scroll back and forth in the same
document a lot; so (a) they would fill up the scrollback with a large amount of unhelpfully
disordered text, and (b) they contain theirownmethod for the user to scroll back to the bit they
were interested in. We have generally found this policy to do the Right Thing in almost all
situations.

Unfortunately,screen is one exception: it uses the alternate screen, but it's still usually
helpful to have PuTTY's scrollback continue working. The simplest solution is to go to the
Features control panel and tick ‘Disable switching to alternate terminal screen’. (See section
4.6.4 for more details.) Alternatively, you can tellscreen itself not to use the alternate screen:
the screen FAQ suggests adding the line ‘termcapinfo xterm ti@:te@ ’ to your
.screenrc file.

The reason why this only started to be a problem in 0.54 is becausescreen typically uses an
unusual control sequence to switch to the alternate screen, and previous versions of PuTTY did
not support this sequence.

A.7.17 Since I upgraded Windows XP to Service Pack 2, I can't use addresses
like 127.0.0.2 .

Some people who ask PuTTY to listen on localhost addresses other than127.0.0.1 to
forward services such as SMB and Windows Terminal Services have found that doing so no
longer works since they upgraded to WinXP SP2.

This is apparently an issue with SP2 that is acknowledged by Microsoft in MS Knowledge Base
article 884020. The article links to a fix you can download.

(However, we've been told that SP2also fixes the bug that means you need to use non-
127.0.0.1 addresses to forward Terminal Services in the first place.)
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A.7.18 PSFTP commands seem to be missing a directory separator (slash).

Some people have reported the following incorrect behaviour with PSFTP:

psftp> pwd
Remote directory is /dir1/dir2
psftp> get filename.ext
/dir1/dir2filename.ext: no such file or directory

This is not a bug in PSFTP. There is a known bug in some versions of portable OpenSSH (bug
697) that causes these symptoms; it appears to have been introduced around 3.7.x. It manifests
only on certain platforms (AIX is what has been reported to us).

There is a patch for OpenSSH attached to that bug; it's also fixed in recent versions of portable
OpenSSH (from around 3.8).

A.7.19 Do you want to hear about ‘Software caused connection abort’?

In the documentation for PuTTY 0.53 and 0.53b, we mentioned that we'd like to hear about any
occurrences of this error. Since the release of PuTTY 0.54, however, we've been convinced that
this error doesn't indicate that PuTTY's doing anything wrong, and we don't need to hear about
further occurrences. See section 10.16 for our current documentation of this error.

A.7.20 My SSH-2 session locks up for a few seconds every so often.

Recent versions of PuTTY automatically initiate repeat key exchange once per hour, to improve
session security. If your client or server machine is slow, you may experience this as a delay of
anything up to thirty seconds or so.

These delays are inconvenient, but they are there for your protection. If they really cause you a
problem, you can choose to turn off periodic rekeying using the ‘Kex’ configuration panel (see
section 4.18), but be aware that you will be sacrificing security for this. (Falling back to SSH-1
would also remove the delays, but would lose alot more security still. We do not recommend
it.)

A.7.21 PuTTY fails to start up. Windows claims that ‘the application
configuration is incorrect’.

This is caused by a bug in certain versions of Windows XP which is triggered by PuTTY 0.58.
This was fixed in 0.59. The ‘xp-wont-run’ entry in PuTTY's wishlist has more details.

A.7.22 When I put 32-bit PuTTY in C:\WINDOWS\SYSTEM32on my 64-bit
Windows system, ‘Duplicate Session’ doesn't work.

The short answer is not to put the PuTTY executables in that location.

On 64-bit systems,C:\WINDOWS\SYSTEM32is intended to contain only 64-bit binaries;
Windows' 32-bit binaries live inC:\WINDOWS\SYSWOW64. When a 32-bit PuTTY executable
runs on a 64-bit system, it cannot by default see the ‘real’C:\WINDOWS\SYSTEM32at all,
because the File System Redirector arranges that the running program sees the appropriate kind
of binaries inSYSTEM32. Thus, operations in the PuTTY suite that involve it accessing its own
executables, such as ‘New Session’ and ‘Duplicate Session’, will not work.
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A.7.23 After I upgraded PuTTY to 0.68, I can no longer connect to my
embedded device or appliance.

If your SSH server has started unexpectedly closing SSH connections after you enter your
password, and it worked before 0.68, you may have a buggy server that objects to certain SSH
protocol extensions.

The SSH protocol recently gained a new ‘terminal mode’,IUTF8 , which PuTTY sends by
default; see section 4.24.2. This is the first new terminal mode since the SSH-2 protocol was
defined. While servers are supposed to ignore modes they don't know about, some buggy servers
will unceremoniously close the connection if they see anything they don't recognise. SSH servers
in embedded devices, network appliances, and the like seem to disproportionately have this bug.

If you think you have such a server, from 0.69 onwards you can disable sending of theIUTF8
mode: on the SSH / TTY panel, selectIUTF8 on the list, select ‘Nothing’, and press ‘Set’. (It's
not possible to disable sending this mode in 0.68.)

A.8 Security questions

A.8.1 Is it safe for me to download PuTTY and use it on a public PC?

It depends on whether you trust that PC. If you don't trust the public PC, don't use PuTTY on
it, and don't use any other software you plan to type passwords into either. It might be watching
your keystrokes, or it might tamper with the PuTTY binary you download. There isnoprogram
safe enough that you can run it on an actively malicious PC and get away with typing passwords
into it.

If you do trust the PC, then it's probably OK to use PuTTY on it (but if you don't trust the network,
then the PuTTY download might be tampered with, so it would be better to carry PuTTY with
you on a USB stick).

A.8.2 What does PuTTY leave on a system? How can I clean up after it?

PuTTY will leave some Registry entries, and a random seed file, on the PC (see question A.5.2).
Windows 7 and up also remember some information about recently launched sessions for the
‘jump list’ feature.

If you are using PuTTY on a public PC, or somebody else's PC, you might want to clean
this information up when you leave. You can do that automatically, by running the command
putty -cleanup . See section 3.11.2 in the documentation for more detail. (Note that this
only removes settings for the currently logged-in user on multi-user systems.)

If PuTTY was installed from the installer package, it will also appear in ‘Add/Remove
Programs’. Current versions of the installer do not offer to remove the above-mentioned items,
so if you want them removed you should runputty -cleanup before uninstalling.

A.8.3 How come PuTTY now supports DSA, when the website used to say
how insecure it was?

DSA has a major weaknessif badly implemented: it relies on a random number generator to far
too great an extent. If the random number generator produces a number an attacker can predict,
the DSA private key is exposed - meaning that the attacker can log in as you on all systems that
accept that key.
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The PuTTY policy changed because the developers were informed of ways to implement DSA
which do not suffer nearly as badly from this weakness, and indeed which don't need to rely
on random numbers at all. For this reason we now believe PuTTY's DSA implementation is
probably OK.

The recently added elliptic-curve signature methods are also DSA-style algorithms, so they have
this same weakness in principle. Our ECDSA implementation uses the same defence as DSA,
while our Ed25519 implementation uses the similar system (but different in details) that the
Ed25519 spec mandates.

A.8.4 Couldn't Pageant use VirtualLock() to stop private keys being
written to disk?

Unfortunately not. TheVirtualLock() function in the Windows API doesn't do a proper job:
it may prevent small pieces of a process's memory from being paged to disk while the process
is running, but it doesn't stop the process's memory as a whole from being swapped completely
out to disk when the process is long-term inactive. And Pageant spends most of its time inactive.

A.8.5 Is the version of PuTTY in the Microsoft Store legit?

The free-of-charge ‘PuTTY’ application at this link is published and maintained by us. The
copy there is the latest release, usually updated within a few days of us publishing it on our own
website.

There have been other copies of PuTTY on the store, some looking quite similar, and some
charging money. Those were uploaded by other people, and we can't guarantee anything about
them.

The first version we published to the Microsoft Store was 0.76 (some time after its initial release
on our website).

A.9 Administrative questions

A.9.1 Is putty.org your website?

No, it isn't.putty.org is run by an opportunist who uses it to advertise their own commercial
SSH implementation to people looking for our free one. We don't own that site, we can't control
it, and we don't advise anyone to use it in preference to our own site.

The real PuTTY web site, run by the PuTTY team, has always been at
https://www.chiark.greenend.org.uk/~sgtatham/putty/ .

A.9.2 Would you like me to register you a nicer domain name?

No, thank you. Even if you can find one (most of them seem to have been registered already, by
people who didn't ask whether we actually wanted it before they applied), we're happy with the
PuTTY web site being exactly where it is. It's not hard to find (just type ‘putty’ into google.com
and we're the first link returned), and we don't believe the administrative hassle of moving the
site would be worth the benefit.

In addition, if wedidwant a custom domain name, we would want to run it ourselves, so we knew
for certain that it would continue to point where we wanted it, and wouldn't suddenly change
or do strange things. Having it registered for us by a third party who we don't even know is not
the best way to achieve this.
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A.9.3 Would you like free web hosting for the PuTTY web site?

We already have some, thanks.

A.9.4 Would you link to my web site from the PuTTY web site?

Only if the content of your web page is of definite direct interest to PuTTY users. If your content
is unrelated, or only tangentially related, to PuTTY, then the link would simply be advertising
for you.

One very nice effect of the Google ranking mechanism is that by and large, the most popular
web sites get the highest rankings. This means that when an ordinary person does a search, the
top item in the search is very likely to be a high-quality site or the site they actually wanted,
rather than the site which paid the most money for its ranking.

The PuTTY web site is held in high esteem by Google, for precisely this reason: lots of people
have linked to it simply because they like PuTTY, without us ever having to ask anyone to link
to us. We feel that it would be an abuse of this esteem to use it to boost the ranking of random
advertisers' web sites. If you want your web site to have a high Google ranking, we'd prefer that
you achieve this the way we did - by being good enough at what you do that people will link to
you simply because they like you.

In particular, we aren't interested in trading links for money (see above), and wecertainlyaren't
interested in trading links for other links (since we have no advertising on our web site, our
Google ranking is not even directly worth anything to us). If we don't want to link to you for
free, then we probably won't want to link to you at all.

If you have software based on PuTTY, or specifically designed to interoperate with PuTTY, or
in some other way of genuine interest to PuTTY users, then we will probably be happy to add a
link to you on our Links page. And if you're running a particularly valuable mirror of the PuTTY
web site, we might be interested in linking to you from our Mirrors page.

A.9.5 Why don't you move PuTTY to SourceForge?

Partly, because we don't want to move the web site location (see question A.9.2).

Also, security reasons. PuTTY is a security product, and as such it is particularly important
to guard the code and the web site against unauthorised modifications which might introduce
subtle security flaws. Therefore, we prefer that the Git repository, web site and FTP site remain
where they are, under the direct control of system administrators we know and trust personally,
rather than being run by a large organisation full of people we've never met and which is known
to have had breakins in the past.

No offence to SourceForge; I think they do a wonderful job. But they're not ideal for everyone,
and in particular they're not ideal for us.

A.9.6 Why can't I subscribe to the putty-bugs mailing list?

Because you're not a member of the PuTTY core development team. The putty-bugs mailing list
is not a general newsgroup-like discussion forum; it's a contact address for the core developers,
and aninternal mailing list for us to discuss things among ourselves. If we opened it up for
everybody to subscribe to, it would turn into something more like a newsgroup and we would
be completely overwhelmed by the volume of traffic. It's hard enough to keep up with the list
as it is.
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A.9.7 If putty-bugs isn't a general-subscription mailing list, what is?

There isn't one, that we know of.

If someone else wants to set up a mailing list or other forum for PuTTY users to help each
other with common problems, that would be fine with us, though the PuTTY team would almost
certainly not have the time to read it. It's probably better to use one of the established newsgroups
for this purpose (see section B.1.2).

A.9.8 How can I donate to PuTTY development?

Please,pleasedon't feel you have to. PuTTY is completely free software, and not shareware.
We think it's very important thateverybodywho wants to use PuTTY should be able to, whether
they have any money or not; so the last thing we would want is for a PuTTY user to feel guilty
because they haven't paid us any money. If you want to keep your money, please do keep it. We
wouldn't dream of asking for any.

Having said all that, if you still reallywant to give us money, we won't argue :-) The easiest
way for us to accept donations is if you send money to<anakin@pobox.com> using PayPal
(www.paypal.com ). If you don't like PayPal, talk to us; we can probably arrange some
alternative means.

Small donations (tens of dollars or tens of euros) will probably be spent on beer or curry, which
helps motivate our volunteer team to continue doing this for the world. Larger donations will
be spent on something that actually helps development, if we can find anything (perhaps new
hardware, or a new version of Windows), but if we can't find anything then we'll just distribute the
money among the developers. If you want to be sure your donation is going towards something
worthwhile, ask us first. If you don't like these terms, feel perfectly free not to donate. We don't
mind.

A.9.9 Can I have permission to put PuTTY on a cover disk / distribute it with
other software / etc?

Yes. For most things, you need not bother asking us explicitly for permission; our licence already
grants you permission.

See section B.8 for more details.

A.9.10 Can you sign an agreement indemnifying us against security
problems in PuTTY?

No!

A vendor of physical security products (e.g. locks) might plausibly be willing to accept financial
liability for a product that failed to perform as advertised and resulted in damage (e.g. valuables
being stolen). The reason they can afford to do this is because they sell alot of units, and only
a small proportion of them will fail; so they can meet their financial liability out of the income
from all the rest of their sales, and still have enough left over to make a profit. Financial liability
is intrinsically linked to selling your product for money.

There are two reasons why PuTTY is not analogous to a physical lock in this context. One is
that software products don't exhibit random variation:if PuTTY has a security hole (which does
happen, although we do our utmost to prevent it and to respond quickly when it does), every
copy of PuTTY will have the same hole, so it's likely to affect all the users at the same time. So
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even if our users were all paying us to use PuTTY, we wouldn't be able tosimultaneouslypay
every affected user compensation in excess of the amount they had paid us in the first place. It
just wouldn't work.

The second, much more important, reason is that PuTTY usersdon'tpay us. The PuTTY team
does not have an income; it's a volunteer effort composed of people spending their spare time
to try to write useful software. We aren't even a company or any kind of legally recognised
organisation. We're just a bunch of people who happen to do some stuff in our spare time.

Therefore, to ask us to assume financial liability is to ask us to assume a risk of having to pay it
out of our ownpersonalpockets: out of the same budget from which we buy food and clothes
and pay our rent. That's more than we're willing to give. We're already giving a lot of our spare
timeto developing software for free; if we had to pay our ownmoneyto do it as well, we'd start
to wonder why we were bothering.

Free software fundamentally does not work on the basis of financial guarantees. Your guarantee
of the software functioning correctly is simply that you have the source code and can check it
before you use it. If you want to be sure there aren't any security holes, do a security audit of the
PuTTY code, or hire a security engineer if you don't have the necessary skills yourself: instead
of trying to ensure you can get compensation in the event of a disaster, try to ensure there isn't
a disaster in the first place.

If you reallywant financial security, see if you can find a security engineer who will take financial
responsibility for the correctness of their review. (This might be less likely to suffer from the
everything-failing-at-once problem mentioned above, because such an engineer would probably
be reviewing a lot ofdifferentproducts which would tend to fail independently.) Failing that,
see if you can persuade an insurance company to insure you against security incidents, and if
the insurer demands it as a condition then get our code reviewed by a security engineer they're
happy with.

A.9.11 Can you sign this form granting us permission to use/distribute
PuTTY?

If your form contains any clause along the lines of ‘the undersigned represents and warrants’,
we're not going to sign it. This is particularly true if it asks us to warrant that PuTTY is secure;
see question A.9.10 for more discussion of this. But it doesn't really matter what we're supposed
to be warranting: even if it's something we already believe is true, such as that we don't infringe
any third-party copyright, we will not sign a document accepting any legal or financial liability.
This is simply because the PuTTY development project has no income out of which to satisfy
that liability, or pay legal costs, should it become necessary. We cannot afford to be sued. We
are assuring you thatwe have done our best; if that isn't good enough for you, tough.

The existing PuTTY licence document already gives you permission to use or distribute PuTTY
in pretty much any way which does not involve pretending you wrote it or suing us if it goes
wrong. We think that really ought to be enough for anybody.

See also question A.9.13 for another reason why we don't want to do this sort of thing.

A.9.12 Can you write us a formal notice of permission to use PuTTY?

We could, in principle, but it isn't clear what use it would be. If you think there's a serious chance
of one of the PuTTY copyright holders suing you (which we don't!), you would presumably want
a signed notice fromall of them; and we couldn't provide that even if we wanted to, because
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many of the copyright holders are people who contributed some code in the past and with whom
we subsequently lost contact. Therefore the best we would be able to doeven in theorywould
be to have the core development team sign the document, which wouldn't guarantee you that
some other copyright holder might not sue.

See also question A.9.13 for another reason why we don't want to do this sort of thing.

A.9.13 Can you sign anything for us?

Not unless there's an incredibly good reason.

We are generally unwilling to set a precedent that involves us having to enter into individual
agreements with PuTTY users. We estimate that we have literallymillions of users, and we
absolutely would not have time to go round signing specific agreements with every one of
them. So if you want us to sign something specific for you, you might usefully stop to consider
whether there's anything special that distinguishes you from 999,999 other users, and therefore
any reason we should be willing to sign something for you without it setting such a precedent.

If your company policy requires you to have an individual agreement with the supplier of any
software you use, then your company policy is simply not well suited to using popular free
software, and we urge you to consider this as a flaw in your policy.

A.9.14 If you won't sign anything, can you give us some sort of assurance
that you won't make PuTTY closed-source in future?

Yes and no.

If what you want is an assurance that somecurrent versionof PuTTY which you've already
downloaded will remain free, then you already have that assurance: it's called the PuTTY
Licence. It grants you permission to use, distribute and copy the software to which it applies;
once we've granted that permission (which we have), we can't just revoke it.

On the other hand, if you want an assurance thatfuture versions of PuTTY won't be closed-
source, that's more difficult. We could in principle sign a document stating that we would never
release a closed-source PuTTY, but that wouldn't assure you that wewouldkeep releasingopen-
source PuTTYs: we would still have the option of ceasing to develop PuTTY at all, which would
surely be even worse for you than making it closed-source! (And we almost certainly wouldn't
wantto sign a document guaranteeing that we would actually continue to do development work
on PuTTY; we certainly wouldn't sign it for free. Documents like that are called contracts of
employment, and are generally not signed except in return for a sizeable salary.)

If we wereto stop developing PuTTY, or to decide to make all future releases closed-source,
then you would still be free to copy the last open release in accordance with the current licence,
and in particular you could start your own fork of the project from that release. If this happened,
I confidently predict thatsomebodywould do that, and that some kind of a free PuTTY would
continue to be developed. There's already precedent for that sort of thing happening in free
software. We can't guarantee that somebodyother than youwould do it, of course; you might
have to do it yourself. But we can assure you that there would be nothingpreventinganyone
from continuing free development if we stopped.

(Finally, we can also confidently predict that if we made PuTTY closed-source and someone
made an open-source fork, most people would switch to the latter. Therefore, it would be pretty
stupid of us to try it.)

175



A.9.15 Can you provide us with export control information / FIPS certification
for PuTTY?

Some people have asked us for an Export Control Classification Number (ECCN) for PuTTY.
We don't know whether we have one, and as a team of free software developers based in the UK
we don't have the time, money, or effort to deal with US bureaucracy to investigate any further.
We believe that PuTTY falls under 5D002 on the US Commerce Control List, but that shouldn't
be taken as definitive. If you need to know more you should seek professional legal advice. The
same applies to any other country's legal requirements and restrictions.

Similarly, some people have asked us for FIPS certification of the PuTTY tools. Unless someone
else is prepared to do the necessary work and pay any costs, we can't provide this.

A.9.16 As one of our existing software vendors, can you just fill in this
questionnaire for us?

We periodically receive requests like this, from organisations which have apparently sent out a
form letter to everyone listed in their big spreadsheet of ‘software vendors’ requiring them all
to answer some long list of questions about supported OS versions, paid support arrangements,
compliance with assorted local regulations we haven't heard of, contact phone numbers, and
other such administrivia. Many of the questions are obviously meaningless when applied to
PuTTY (we don't provide any paid support in the first place!), most of the rest could have been
answered with only a very quick look at our website, and some we are actively unwilling to
answer (we are private individuals, why would we want to give out our home phone numbers
to large corporations?).

We don't make a habit of responding in full to these questionnaires, becausewe are not a software
vendor.

A softwarevendoris a company to which you are paying lots of money in return for some
software. They know who you are, and they know you're paying them money; so they have an
incentive to fill in your forms and questionnaires, to research any local regulations you cite if
they don't already know about them, and generally to provide every scrap of information you
might possibly need in the most convenient manner for you, because they want to keep being
paid.

But we are a team of free software developers, and that means your relationship with us is nothing
like that at all. If you once downloaded our software from our website, that's great and we hope
you found it useful, but it doesn't mean we have the least idea who you are, or any incentive to
do lots of unpaid work to support our ‘relationship’ with you.

It's not that we are unwilling toprovide information. We put as much of it as we can on our
website for your convenience, and if you actually need to know some fact about PuTTY which
you haven't been able to find on the website (and which is not obviously inapplicable to free
software in the first place) then please do ask us, and we'll try to answer as best we can. But
we put up the website and this FAQ precisely so that wedon'thave to keep answering the same
questions over and over again, so we aren't prepared to fill in completely generic form-letter
questionnaires for people who haven't done their best to find the answers here first.

If you work for an organisation which you think might be at risk of making this mistake, we
urge you to reorganise your list of software suppliers so that it clearly distinguishes paid vendors
who know about you from free software developers who don't have any idea who you are. Then,
only send out these mass mailings to the former.
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A.9.17 The sha1sums / sha256sums / etc files on your download page don't
match the binaries.

People report this every so often, and usually the reason turns out to be that they've matched up
the wrong checksums file with the wrong binaries.

The PuTTY download page contains more than one version of the software. There's alatest
releaseversion; there are thedevelopment snapshots; and when we're in the run-up to making
a release, there are alsopre-releasebuilds of the upcoming new version. Each one has its own
collection of binaries, and its own collection of checksums files to go with them.

So if you've downloaded the release version of the actual program, you need the release version
of the checksums too, otherwise you will see a mismatch. Similarly, the development snapshot
binaries go with the development snapshot checksums, and so on. (We've colour-coded the
download page in an effort to reduce this confusion a bit.)

Another thing to watch out for: as of 0.71, executables likeputty.exe come in two flavours
for each platform: the standalone versions on the website, each of which contains embedded
help, and the versions installed by the installer, which use a separate help file also in the installer.
We provide checksums for both; the latter are indicated with ‘(installer version) ’ after
the filename.

If you have double-checked all that, and you still think there's a real mismatch, then please send
us a report carefully quoting everything relevant:

• the exact URL you got your binary from

• the checksum of the binary after you downloaded

• the exact URL you got your checksums file from

• the checksum that file says the binary should have.

A.10 Miscellaneous questions

A.10.1 Is PuTTY a port of OpenSSH, or based on OpenSSH or OpenSSL?

No, it isn't. PuTTY is almost completely composed of code written from scratch for PuTTY.
The only code we share with OpenSSH is the detector for SSH-1 CRC compensation attacks,
written by CORE SDI S.A; we share no code at all with OpenSSL.

A.10.2 Where can I buy silly putty?

You're looking at the wrong web site; the only PuTTY we know about here is the name of a
computer program.

If you want the kind of putty you can buy as an executive toy, the PuTTY team can
personally recommend Thinking Putty, which you can buy from Crazy Aaron's Putty World, at
www.puttyworld.com .

A.10.3 What does ‘PuTTY’ mean?

It's the name of a popular SSH and Telnet client. Any other meaning is in the eye of the beholder.
It's been rumoured that ‘PuTTY’ is the antonym of ‘getty ’, or that it's the stuff that makes
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your Windows useful, or that it's a kind of plutonium Teletype. We couldn't possibly comment
on such allegations.

A.10.4 How do I pronounce ‘PuTTY’?

Exactly like the English word ‘putty’, which we pronounce /'pVti/.

178



Appendix B: Feedback and bug reporting

This is a guide to providing feedback to the PuTTY development team. It is provided as both a
web page on the PuTTY site, and an appendix in the PuTTY manual.

Section B.1 gives some general guidelines for sending any kind of e-mail to the development
team. Following sections give more specific guidelines for particular types of e-mail, such as
bug reports and feature requests.

B.1 General guidelines
The PuTTY development team gets alot of mail. If you can possibly solve your own problem
by reading the manual, reading the FAQ, reading the web site, asking a fellow user, perhaps
posting to a newsgroup (see section B.1.2), or some other means, then it would make our lives
much easier.

We get so much e-mail that we literally do not have time to answer it all. We regret this, but
there's nothing we can do about it. So if you canpossiblyavoid sending mail to the PuTTY team,
we recommend you do so. In particular, support requests (section B.6) are probably better sent
to newsgroups, or passed to a local expert if possible.

The PuTTY contact email address is a private mailing list containing four or five core developers.
Don't be put off by it being a mailing list: if you need to send confidential data as part of a bug
report, you can trust the people on the list to respect that confidence. Also, the archives aren't
publicly available, so you shouldn't be letting yourself in for any spam by sending us mail.

Please use a meaningful subject line on your message. We get a lot of mail, and it's hard to find
the message we're looking for if they all have subject lines like ‘PuTTY bug’.

B.1.1 Sending large attachments

Since the PuTTY contact address is a mailing list, e-mails larger than 40Kb will be held for
inspection by the list administrator, and will not be allowed through unless they really appear
to be worth their large size.

If you are considering sending any kind of large data file to the PuTTY team, it's almost always
a bad idea, or at the very least it would be better to ask us first whether we actually need the file.
Alternatively, you could put the file on a web site and just send us the URL; that way, we don't
have to download it unless we decide we actually need it, and only one of us needs to download
it instead of it being automatically copied to all the developers.

(If the file contains confidential information, then you could encrypt it with our Secure Contact
Key; see section F.1 for details. Pleaseonlyuse this for information thatneedsto be confidential.)

Some people like to send mail in MS Word format. Pleasedon'tsend us bug reports, or any other
mail, as a Word document. Word documents are roughly fifty times larger than writing the same
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report in plain text. In addition, most of the PuTTY team read their e-mail on Unix machines, so
copying the file to a Windows box to run Word is very inconvenient. Not only that, but several
of us don't evenhavea copy of Word!

Some people like to send us screen shots when demonstrating a problem. Please don't do this
without checking with us first - we almost never actually need the information in the screen
shot. Sending a screen shot of an error box is almost certainly unnecessary when you could just
tell us in plain text what the error was. (On some versions of Windows, pressing Ctrl-C when
the error box is displayed will copy the text of the message to the clipboard.) Sending a full-
screen shot isoccasionallyuseful, but it's probably still wise to check whether we need it before
sending it.

If you mustmail a screen shot, don't send it as a.BMP file. BMPs have no compression and
they aremuchlarger than other image formats such as PNG, TIFF and GIF. Convert the file to
a properly compressed image format before sending it.

Please don't mail us executables, at all. Our mail server blocks all incoming e-mail containing
executables, as a defence against the vast numbers of e-mail viruses we receive every day. If
you mail us an executable, it will just bounce.

If you have made a tiny modification to the PuTTY code, please send us apatchto the source
code if possible, rather than sending us a huge.ZIP file containing the complete sources plus
your modification. If you've only changed 10 lines, we'd prefer to receive a mail that's 30 lines
long than one containing multiple megabytes of data we already have.

B.1.2 Other places to ask for help

There are two Usenet newsgroups that are particularly relevant to the PuTTY tools:

• comp.security.ssh , for questions specific to using the SSH protocol;

• comp.terminals , for issues relating to terminal emulation (for instance, keyboard
problems).

Please use the newsgroup most appropriate to your query, and remember that these are general
newsgroups, not specifically about PuTTY.

If you don't have direct access to Usenet, you can access these newsgroups through Google
Groups (groups.google.com ).

B.2 Reporting bugs
If you think you have found a bug in PuTTY, your first steps should be:

• Check the Wishlist page on the PuTTY website, and see if we already know about the
problem. If we do, it is almost certainly not necessary to mail us about it, unless you think
you have extra information that might be helpful to us in fixing it. (Of course, if we actually
needspecific extra information about a particular bug, the Wishlist page will say so.)

• Check the Change Log on the PuTTY website, and see if we have already fixed the bug in
the development snapshots.

• Check the FAQ on the PuTTY website (also provided as appendix A in the manual), and
see if it answers your question. The FAQ lists the most common things which people think
are bugs, but which aren't bugs.
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• Download the latest development snapshot and see if the problem still happens with that.
This really is worth doing. As a general rule we aren't very interested in bugs that appear
in the release version but not in the development version, because that usually means they
are bugs we havealready fixed. On the other hand, if you can find a bug in the development
version that doesn't appear in the release, that's likely to be a new bug we've introduced
since the release and we're definitely interested in it.

If none of those options solved your problem, and you still need to report a bug to us, it is useful
if you include some general information:

• Tell us what version of PuTTY you are running. To find this out, use the ‘About PuTTY’
option from the System menu. Pleasedo notjust tell us ‘I'm running the latest version’; e-
mail can be delayed and it may not be obvious which version was the latest at the time you
sent the message.

• PuTTY is a multi-platform application; tell us what version of what OS you are running
PuTTY on. (If you're running on Unix, or Windows for Arm, tell us, or we'll assume you're
running on Windows for Intel as this is overwhelmingly the case.)

• Tell us what protocol you are connecting with: SSH, Telnet, Rlogin, SUPDUP, or Raw
mode, or a serial connection.

• Tell us what kind of server you are connecting to; what OS, and if possible what SSH server
(if you're using SSH). You can get some of this information from the PuTTY Event Log
(see section 3.1.3.1 in the manual).

• Send us the contents of the PuTTY Event Log, unless you have a specific reason not to (for
example, if it contains confidential information that you think we should be able to solve
your problem without needing to know).

• Try to give us as much information as you can to help us see the problem for ourselves. If
possible, give us a step-by-step sequence ofpreciseinstructions for reproducing the fault.

• Don't just tell us that PuTTY ‘does the wrong thing’; tell us exactly and precisely what it
did, and also tell us exactly and precisely what you think it should have done instead. Some
people tell us PuTTY does the wrong thing, and it turns out that it was doing the right thing
and their expectations were wrong. Help to avoid this problem by telling us exactly what
you think it should have done, and exactly what it did do.

• If you think you can, you're welcome to try to fix the problem yourself. A patch to the
code which fixes a bug is an excellent addition to a bug report. However, a patch is never
asubstitutefor a good bug report; if your patch is wrong or inappropriate, and you haven't
supplied us with full information about the actual bug, then we won't be able to find a better
solution.

• https://www.chiark.greenend.org.uk/~sgtatham/bugs.html is an
article on how to report bugs effectively in general. If your bug report isparticularly
unclear, we may ask you to go away, read this article, and then report the bug again.

It is reasonable to report bugs in PuTTY's documentation, if you think the documentation
is unclear or unhelpful. But we do need to be given exact details ofwhat you think the
documentation has failed to tell you, orhowyou think it could be made clearer. If your problem
is simply that you don'tunderstandthe documentation, we suggest posting to a newsgroup (see
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section B.1.2) and seeing if someone will explain what you need to know.Then, if you think
the documentation could usefully have told you that, send us a bug report and explain how you
think we should change it.

B.3 Reporting security vulnerabilities
If you've found a security vulnerability in PuTTY, you might well want to notify us using
an encrypted communications channel, to avoid disclosing information about the vulnerability
before a fixed release is available.

For this purpose, we provide a GPG key suitable for encryption: the Secure Contact Key. See
section F.1 for details of this.

(Of course, vulnerabilities are also bugs, so please do include as much information as possible
about them, the same way you would with any other bug report.)

B.4 Requesting extra features
If you want to request a new feature in PuTTY, the very first things you should do are:

• Check the Wishlist page on the PuTTY website, and see if your feature is already on the
list. If it is, it probably won't achieve very much to repeat the request. (But see section B.5
if you want to persuade us to give your particular feature higher priority.)

• Check the Wishlist and Change Log on the PuTTY website, and see if we have already
added your feature in the development snapshots. If it isn't clear, download the latest
development snapshot and see if the feature is present. If it is, then it will also be in the
next release and there is no need to mail us at all.

If you can't find your feature in either the development snapshotsor the Wishlist, then you
probably do need to submit a feature request. Since the PuTTY authors are very busy, it helps
if you try to do some of the work for us:

• Do as much of the design as you can. Think about ‘corner cases’; think about how your
feature interacts with other existing features. Think about the user interface; if you can't
come up with a simple and intuitive interface to your feature, you shouldn't be surprised if
we can't either. Always imagine whether it's possible for there to be more than one, or less
than one, of something you'd assumed there would be one of. (For example, if you were
to want PuTTY to put an icon in the System tray rather than the Taskbar, you should think
about what happens if there's more than one PuTTY active; how would the user tell which
was which?)

• If you can program, it may be worth offering to write the feature yourself and send us a
patch. However, it is likely to be helpful if you confer with us first; there may be design
issues you haven't thought of, or we may be about to make big changes to the code which
your patch would clash with, or something. If you check with the maintainers first, there is
a better chance of your code actually being usable. Also, read the design principles listed
in appendix E: if you do not conform to them, we will probably not be able to accept your
patch.

B.5 Requesting features that have already been requested
If a feature is already listed on the Wishlist, then it usually means we would like to add it to
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PuTTY at some point. However, this may not be in the near future. If there's a feature on the
Wishlist which you would like to see in thenear future, there are several things you can do to
try to increase its priority level:

• Mail us and vote for it. (Be sure to mention that you've seen it on the Wishlist, or we might
think you haven't evenread the Wishlist). This probably won't have verymucheffect; if
a huge number of people vote for something then it may make a difference, but one or
two extra votes for a particular feature are unlikely to change our priority list immediately.
Offering a new and compelling justification might help. Also, don't expect a reply.

• Offer us money if we do the work sooner rather than later. This sometimes works, but not
always. The PuTTY team all have full-time jobs and we're doing all of this work in our free
time; we may sometimes be willing to give up some more of our free time in exchange for
some money, but if you try to bribe us for abig feature it's entirely possible that we simply
won't have the time to spare - whether you pay us or not. (Also, we don't accept bribes to
addbadfeatures to the Wishlist, because our desire to provide high-quality software to the
users comes first.)

• Offer to help us write the code. This is probably theonlyway to get a feature implemented
quickly, if it's a big one that we don't have time to do ourselves.

B.6 Support requests
If you're trying to make PuTTY do something for you and it isn't working, but you're not sure
whether it's a bug or not, thenpleaseconsider looking for help somewhere else. This is one of
the most common types of mail the PuTTY team receives, and we simply don't have time to
answer all the questions. Questions of this type include:

• If you want to do something with PuTTY but have no idea where to start, and reading the
manual hasn't helped, try posting to a newsgroup (see section B.1.2) and see if someone
can explain it to you.

• If you have tried to do something with PuTTY but it hasn't worked, and you aren't sure
whether it's a bug in PuTTY or a bug in your SSH server or simply that you're not doing
it right, then try posting to a newsgroup (see section B.1.2) and see if someone can solve
your problem. Or try doing the same thing with a different SSH client and see if it works
with that. Please do not report it as a PuTTY bug unless you are really sure itis a bug in
PuTTY.

• If someone else installed PuTTY for you, or you're using PuTTY on someone else's
computer, try asking them for help first. They're more likely to understand how they
installed it and what they expected you to use it for than we are.

• If you have successfully made a connection to your server and now need to know what to
type at the server's command prompt, or other details of how to use the server-end software,
talk to your server's system administrator. This is not the PuTTY team's problem. PuTTY
is only a communications tool, like a telephone; if you can't speak the same language as
the person at the other end of the phone, it isn't the telephone company's job to teach it to
you.

If you absolutely cannot get a support question answered any other way, you can try mailing it
to us, but we can't guarantee to have time to answer it.
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B.7 Web server administration
If the PuTTY web site is down (Connection Timed Out), please don't bother mailing us to tell
us about it. Most of us read our e-mail on the same machines that host the web site, so if those
machines are down then we will noticebeforewe read our e-mail. So there's no point telling us
our servers are down.

Of course, if the web site has some other error (Connection Refused, 404 Not Found, 403
Forbidden, or something else) then we mightnothave noticed and it might still be worth telling
us about it.

If you want to report a problem with our web site, check that you're
looking at our real web site and not a mirror. The real web site is
at https://www.chiark.greenend.org.uk/~sgtatham/putty/ ; if that's not
where you're reading this, then don't report the problem to us until you've checked that it's really
a problem with the main site. If it's only a problem with the mirror, you should try to contact
the administrator of that mirror site first, and only contact us if that doesn't solve the problem
(in case we need to remove the mirror from our list).

B.8 Asking permission for things
PuTTY is distributed under the MIT Licence (see appendix D for details). This means you can
do almostanythingyou like with our software, our source code, and our documentation. The
only things you aren't allowed to do are to remove our copyright notices or the licence text itself,
or to hold us legally responsible if something goes wrong.

So if you want permission to include PuTTY on a magazine cover disk, or as part of a collection
of useful software on a CD or a web site, thenpermission is already granted. You don't have to
mail us and ask. Just go ahead and do it. We don't mind.

(If you want to distribute PuTTY alongside your own application for use with that application,
or if you want to distribute PuTTY within your own organisation, then we recommend, but do
not insist, that you offer your own first-line technical support, to answer questions about the
interaction of PuTTY with your environment. If your users mail us directly, we won't be able
to tell them anything useful about your specific setup.)

If you want to use parts of the PuTTY source code in another program, then it might be worth
mailing us to talk about technical details, but if all you want is to ask permission then you don't
need to bother. You already have permission.

If you just want to link to our web site, just go ahead. (It's not clear that wecouldstop you doing
this, even if we wanted to!)

B.9 Mirroring the PuTTY web site
If you want to set up a mirror of the PuTTY website, go ahead and set one up. Please don't bother
asking us for permission before setting up a mirror. You already have permission.

If the mirror is in a country where we don't already have plenty of mirrors, we may be willing
to add it to the list on our mirrors page. Read the guidelines on that page, make sure your mirror
works, and email us the information listed at the bottom of the page.

Note that we do notpromiseto list your mirror: we get a lot of mirror notifications and yours
may not happen to find its way to the top of the list.
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Also note that we link to all our mirror sites using therel="nofollow" attribute. Running
a PuTTY mirror is not intended to be a cheap way to gain search rankings.

If you have technical questions about the process of mirroring, then you might want to mail us
before setting up the mirror (see also the guidelines on the Mirrors page); but if you just want
to ask for permission, you don't need to. You already have permission.

B.10 Praise and compliments
One of the most rewarding things about maintaining free software is getting e-mails that just
say ‘thanks’. We are always happy to receive e-mails of this type.

Regrettably we don't have time to answer them all in person. If you mail us a compliment and
don't receive a reply,pleasedon't think we've ignored you. We did receive it and we were happy
about it; we just didn't have time to tell you so personally.

To everyone who's ever sent us praise and compliments, in the past and the future:you're
welcome!

B.11 E-mail address
The actual address to mail is<putty@projects.tartarus.org> .
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Appendix C: PPK file format

This appendix documents the file format used by PuTTY to store private keys.

In this appendix, binary data structures are described using data type representations such as
‘uint32 ’, ‘ string ’ and ‘mpint ’ as used in the SSH protocol standards themselves. These
are defined authoritatively by RFC 4251 section 5, ‘Data Type Representations Used in the SSH
Protocols’.

C.1 Overview

A PPK file stores a private key, and the corresponding public key. Both are contained in the
same file.

The file format can be completely unencrypted, or it can encrypt the private key. Thepublic
key is stored in cleartext in both cases. (This enables PuTTY to send the public key to an SSH
server to see whether it will accept it, and not bother prompting for the passphrase unless the
server says yes.)

When the key file is encrypted, the encryption key is derived from a passphrase. An encrypted
PPK file is also tamper-proofed using a MAC (authentication code), also derived from the same
passphrase. The MAC protects the encrypted private key data, but it also covers the cleartext
parts of the file. So you can't edit the public half of the key without invalidating the MAC and
causing the key file as a whole to become useless.

This MAC protects the key file against active cryptographic attacks in which the public half of a
key pair is modified in a controlled way that allows an attacker to deduce information about the
private half from the resulting corrupted signatures. Any attempt to do that to a PPK file should
be reliably caught by the MAC failing to validate.

(Such an attack would only be useful if the key file was stored in a location where the attacker
could modify it without also having full access to the process that you type passphrases into.
But that's not impossible; for example, if your home directory was on a network file server, then
the file server's administrator could access the key file but not processes on the client machine.)

The MAC also covers thecommenton the key. This stops an attacker from swapping keys with
each other and editing the comments to disguise the fact. As a consequence, PuTTYgen cannot
edit the comment on a key unless you decrypt the key with your passphrase first.

(The circumstances in whichthatattack would be useful are even more restricted. One example
might be that the different keys trigger specific actions on the server you're connecting to and
one of those actions is more useful to the attacker than the other. But once you have a MAC at
all, it's no extra effort to make it cover as much as possible, and usually sensible.)
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C.2 Outer layer
The outer layer of a PPK file is text-based. The PuTTY tools will always use LF line termination
when writing PPK files, but will tolerate CR+LF and CR-only on input.

The first few lines identify it as a PPK, and give some initial data about what's stored in it and
how. They look like this:

PuTTY-User-Key-File- version : algorithm-name
Encryption: encryption-type
Comment: key-comment-string

version is a decimal number giving the version number of the file format itself. The current file
format version is 3.

algorithm-name is the SSH protocol identifier for the public key algorithm that this key is used
for (such as ‘ssh-dss ’ or ‘ ecdsa-sha2-nistp384 ’).

encryption-type indicates whether this key is stored encrypted, and if so, by what method.
Currently the only supported encryption types are ‘aes256-cbc ’ and ‘none ’.

key-comment-string is a free text field giving the comment. This can contain any byte values
other than 13 and 10 (CR and LF).

The next part of the file gives the public key. This is stored unencrypted but base64-encoded
(RFC 4648), and is preceded by a header line saying how many lines of base64 data are shown,
looking like this:

Public-Lines: number-of-lines
that many lines of base64 data

The base64-encoded data in this blob is formatted in exactly the same way as an SSH public
key sent over the wire in the SSH protocol itself. That is also the same format as the base64
data stored in OpenSSH'sauthorized_keys file, except that in a PPK file the base64 data
is split across multiple lines. But if you remove the newlines from the middle of this section,
the resulting base64 blob is in the right format to go in anauthorized_keys line.

If the key is encrypted (i.e.encryption-type is not ‘none ’), then the next thing that appears is
a sequence of lines specifying how the keys for encrypting the file are to be derived from the
passphrase:

Key-Derivation: argon2-flavour
Argon2-Memory: decimal-integer
Argon2-Passes: decimal-integer
Argon2-Parallelism: decimal-integer
Argon2-Salt: hex-string

argon2-flavour is one of the identifiers ‘Argon2d ’, ‘ Argon2i ’ or ‘ Argon2id ’, all
describing variants of the Argon2 password-hashing function.

The three integer values are used as parameters for Argon2, which allows you to configure the
amount of memory used (in Kbyte), the number of passes of the algorithm to run (to tune its
running time), and the degree of parallelism required by the hash function. The salt is decoded
into a sequence of binary bytes and used as an additional input to Argon2. (It is chosen randomly
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when the key file is written, so that a guessing attack can't be mounted in parallel against multiple
key files.)

The next part of the file gives the private key. This is base64-encoded in the same way:

Private-Lines: number-of-lines
that many lines of base64 data

The binary data represented in this base64 blob may be encrypted, depending on theencryption-
typefield in the key file header shown above:

• If encryption-type is ‘none ’, then this data is stored in plain text.

• If encryption-type is ‘aes256-cbc ’, then this data is encrypted using AES, with a 256-
bit key length, in the CBC cipher mode. The key and initialisation vector are derived from
the passphrase: see section C.4.

In order to encrypt the private key data with AES, it must be a multiple of 16 bytes (the
AES cipher block length). This is achieved by appending random padding to the data
before encrypting it. When decoding it after decryption, the random data can be ignored:
the internal structure of the data is enough to tell you when you've reached the end of the
meaningful part.

Unlike public keys, the binary encoding of private keys is not specified at all in the SSH
standards. See section C.3 for details of the private key format for each key type supported by
PuTTY.

The final thing in the key file is the MAC:

Private-MAC: hex-mac-data

hex-mac-datais a hexadecimal-encoded value, 64 digits long (i.e. 32 bytes), generated using
the HMAC-SHA-256 algorithm with the following binary data as input:

• string : thealgorithm-name header field.

• string : theencryption-type header field.

• string : thekey-comment-stringheader field.

• string : the binary public key data, as decoded from the base64 lines after the ‘Public-
Lines ’ header.

• string : the plaintext of the binary private key data, as decoded from the base64 lines
after the ‘Private-Lines ’ header. If that data was stored encrypted, then the decrypted
version of it is used in this MAC preimage,includingthe random padding mentioned above.

The MAC key is derived from the passphrase: see section C.4.

C.3 Private key encodings
This section describes the private key format for each key type supported by PuTTY.

Because the PPK format also contains the public key (and both public and private key are
protected by the same MAC to ensure they can't be made inconsistent), there is no need for the
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private key section of the file to repeat data from the public section. So some of these formats
are very short.

In all cases, a decoding application can begin reading from the start of the decrypted private
key data, and know when it has read all that it needs. This allows random padding after the
meaningful data to be safely ignored.

C.3.1 RSA

RSA keys are stored using analgorithm-name of ‘ssh-rsa ’. (Keys stored like this are also
used by the updated RSA signature schemes that use hashes other than SHA-1.)

The public key data has already provided the key modulus and the public encoding exponent.
The private data stores:

• mpint : the private decoding exponent of the key.

• mpint : one prime factorp of the key.

• mpint : the other prime factorq of the key. (RSA keys stored in this format are expected
to have exactly two prime factors.)

• mpint : the multiplicative inverse ofq modulop.

C.3.2 DSA

DSA keys are stored using analgorithm-name of ‘ssh-dss ’.

The public key data has already provided the key parameters (the large primep, the small prime
q and the group generatorg), and the public keyy. The private key stores:

• mpint : the private keyx, which is the discrete logarithm ofy in the group generated byg
modp.

C.3.3 NIST elliptic-curve keys

NIST elliptic-curve keys are stored using one of the followingalgorithm-name values, each
corresponding to a different elliptic curve and key size:

• ‘ecdsa-sha2-nistp256 ’

• ‘ecdsa-sha2-nistp384 ’

• ‘ecdsa-sha2-nistp521 ’

The public key data has already provided the public elliptic curve point. The private key stores:

• mpint : the private exponent, which is the discrete log of the public point.

C.3.4 EdDSA elliptic-curve keys (Ed25519 and Ed448)

EdDSA elliptic-curve keys are stored using one of the followingalgorithm-name values, each
corresponding to a different elliptic curve and key size:

• ‘ssh-ed25519 ’

• ‘ssh-ed448 ’
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The public key data has already provided the public elliptic curve point. The private key stores:

• mpint : the private exponent, which is the discrete log of the public point.

C.4 Key derivation
When a key file is encrypted, there are three pieces of key material that need to be computed
from the passphrase:

• the key for the symmetric cipher used to encrypt the private key

• the initialisation vector for that cipher encryption

• the key for the MAC.

If encryption-type is ‘aes256-cbc ’, then the symmetric cipher key is 32 bytes long, and the
initialisation vector is 16 bytes (one cipher block). The length of the MAC key is also chosen
to be 32 bytes.

If encryption-type is ‘none ’, then all three of these pieces of data have zero length. (The MAC
is still generated and checked in the key file format, but it has a zero-length key.)

If the amount of key material required is not zero, then the passphrase is fed to the Argon2 key
derivation function, in whichever mode is described in the ‘Key-Derivation ’ header in the
key file, with parameters derived from the various ‘Argon2- Parameter: ’ headers.

(If the key is unencrypted, then all those headers are omitted, and Argon2 is not run at all.)

Argon2 takes two extra string inputs in addition to the passphrase and the salt: a secret key, and
some ‘associated data’. In PPK's use of Argon2, these are both set to the empty string.

The ‘tag length’ parameter to Argon2 (i.e. the amount of data it is asked to output) is set to the
sum of the lengths of all of the data items required, i.e. (cipher key length + IV length + MAC
key length). The output data is interpreted as the concatenation of the cipher key, the IV and the
MAC key, in that order.

So, for ‘aes256-cbc ’, the tag length will be 32+16+32 = 80 bytes; of the 80 bytes of output
data, the first 32 bytes are used as the 256-bit AES key, the next 16 as the CBC IV, and the final
32 bytes as the HMAC-SHA-256 key.

C.5 Older versions of the PPK format

C.5.1 Version 2

PPK version 2 was used by PuTTY 0.52 to 0.74 inclusive.

In PPK version 2, the MAC algorithm used was HMAC-SHA-1 (so thePrivate-MAC line
contained only 40 hex digits).

The ‘Key-Derivation: ’ header and all the ‘Argon2- Parameter: ’ headers were absent.
Instead of using Argon2, the key material for encrypting the private blob was derived from the
passphrase in a totally different way, as follows.

The cipher key for ‘aes256-cbc ’ was constructed by generating two SHA-1 hashes,
concatenating them, and taking the first 32 bytes of the result. (So you'd get all 20 bytes of the
first hash output, and the first 12 of the second). Each hash preimage was as follows:
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• uint32 : a sequence number. This is 0 in the first hash, and 1 in the second. (The idea
was to extend this mechanism to further hashes by continuing to increment the sequence
number, if future changes required even longer keys.)

• the passphrase, without any prefix length field.

In PPK v2, the CBC initialisation vector was all zeroes.

The MAC key was 20 bytes long, and was a single SHA-1 hash of the following data:

• the fixed string ‘putty-private-key-file-mac-key ’, without any prefix length
field.

• the passphrase, without any prefix length field. (If the key is stored unencrypted, the
passphrase was taken to be the empty string for these purposes.)

C.5.2 Version 1

PPK version 1 was a badly designed format, only used during initial development, and not
recommended for production use.

PPK version 1 was never used by a released version of PuTTY. It was only emitted by some early
development snapshots between version 0.51 (which did not support SSH-2 public keys at all)
and 0.52 (which already used version 2 of this file format). Ihopethere are no PPK v1 files in
use anywhere. But just in case, the old badly designed format is documented here anyway.

In PPK version 1, the input to the MAC does not include any of the header fields or the public
key. It is simply the private key data (still in plaintext and including random padding), all by
itself (without a wrappingstring ).

PPK version 1 keys must therefore be rigorously validated after loading, to ensure that the public
and private parts of the key were consistent with each other.

PPK version 1 only supported the RSA and DSA key types. For RSA, this validation can be
done using only the provided data (since the private key blob contains enough information to
reconstruct the public values anyway). But for DSA, that isn't quite enough.

Hence, PPK version 1 DSA keys extended the private data so that immediately afterxwas stored
an extra value:

• string : a SHA-1 hash of the public key data, whose preimage consists of

• string : the large primep

• string : the small primeq

• string : the group generatorg

The idea was that checking this hash would verify that the key parameters had not been tampered
with, and then the loading application could directly verify thatg^x = y.

In anunencryptedversion 1 key file, the MAC is replaced by a plain SHA-1 hash of the private
key data. This is indicated by the ‘Private-MAC: ’ header being replaced with ‘Private-
Hash: ’ instead.
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Appendix D: PuTTY Licence

PuTTY is copyright 1997-2022 Simon Tatham.

Portions copyright Robert de Bath, Joris van Rantwijk, Delian Delchev, Andreas Schultz, Jeroen
Massar, Wez Furlong, Nicolas Barry, Justin Bradford, Ben Harris, Malcolm Smith, Ahmad
Khalifa, Markus Kuhn, Colin Watson, Christopher Staite, Lorenz Diener, Christian Brabandt,
Jeff Smith, Pavel Kryukov, Maxim Kuznetsov, Svyatoslav Kuzmich, Nico Williams, Viktor
Dukhovni, Josh Dersch, Lars Brinkhoff, and CORE SDI S.A.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the ‘Software’), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
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Appendix E: PuTTY hacking guide

This appendix lists a selection of the design principles applying to the PuTTY source code. If
you are planning to send code contributions, you should read this first.

E.1 Cross-OS portability
Despite Windows being its main area of fame, PuTTY is no longer a Windows-only application
suite. It has a working Unix port; a Mac port is in progress; more ports may or may not happen
at a later date.

Therefore, embedding Windows-specific code in core modules such asssh.c is not acceptable.
We went to great lengths toremoveall the Windows-specific stuff from our core modules, and
to shift it out into Windows-specific modules. Adding large amounts of Windows-specific stuff
in parts of the code that should be portable is almost guaranteed to make us reject a contribution.

The PuTTY source base is divided into platform-specific modules and platform-generic
modules. The Unix-specific modules are all in theunix subdirectory; the Windows-specific
modules are in thewindows subdirectory.

All the modules in the main source directory and other subdirectories - notablyall of the code
for the various back ends - are platform-generic. We want to keep them that way.

This also means you should stick to the C semantics guaranteed by the C standard: try not to
make assumptions about the precise size of basic types such asint andlong int ; don't use
pointer casts to do endianness-dependent operations, and so on.

(Evenwithin a platform front end you should still be careful of some of these portability issues.
The Windows front end compiles on both 32- and 64-bit x86 and also Arm.)

Our current choice of C standards version ismostlyC99. With a couple of exceptions, you
can assume that C99 features are available (in particular<stdint.h> , <stdbool.h>
and inline ), but you shouldn't use things that are new in C11 (such as<uchar.h> or
_Generic ).

The exceptions to that rule are due to the need for Visual Studio compatibility:

• Don't use variable-length arrays. Visual Studio doesn't support them even now that it's
adopted the rest of C99. We use-Wvla when building with gcc and clang, to make it easier
to avoid accidentally breaking that rule.

• For historical reasons, we still build with one older VS version which lacks
<inttypes.h> . So that file is included centrally indefs.h , and has a set of
workaround definitions for thePRIx64 -type macros we use. If you need to use another one
of those macros, you need to add a workaround definition indefs.h , and don't casually
re-include<inttypes.h> anywhere else in the source file.
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Here are a few portability assumptions that wedocurrently allow (because we'd already have to
thoroughly vet the existing code if they ever needed to change, and it doesn't seem worth doing
that unless we really have to):

• You can assumeint isat least32 bits wide. (We've never tried to port PuTTY to a platform
with 16-bit int , and it doesn't look likely to be necessary in future.)

• Similarly, you can assumechar is exactly 8 bits. (Exceptions to that are even less likely
to be relevant to us than shortint .)

• You can assume that usingmemset to write zero bytes over a whole structure will have
the effect of setting all its pointer fields toNULL. (The standard itself guarantees this for
integerfields, but not for pointers.)

• You can assume thattime_t has POSIX semantics, i.e. that it represents an integer
number of non-leap seconds since 1970-01-01 00:00:00 UTC. (Times in this format are
used in X authorisation, but we could work around that by carefully distinguishing local
time_t from time values used in the wire protocol; but these semantics oftime_t are
also baked into the shared library API used by the GSSAPI authentication code, which
would be much harder to change.)

• You can assume that the execution character encoding is a superset of the printable
characters of ASCII. (In particular, it's fine to do arithmetic on achar value representing
a Latin alphabetic character, without bothering to allow for EBCDIC or other non-
consecutive encodings of the alphabet.)

On the other hand, here are some particular thingsnot to assume:

• Don't assume anything about thesignednessof char . In particular, youmust cast
char values tounsigned char before passing them to any<ctype.h> function
(because those expect a non-negative character value, orEOF). If you need a particular
signedness, explicitly specifysigned char orunsigned char , or use C99int8_t
or uint8_t .

• From past experience with MacOS, we're still a bit nervous about'\n' and '\r'
potentially having unusual meanings on a given platform. So it's fine to say\n in a
string you're passing toprintf , but in any context where those characters appear in a
standardised wire protocol or a binary file format, they should be spelled'\012' and
'\015' respectively.

E.2 Multiple backends treated equally
PuTTY is not an SSH client with some other stuff tacked on the side. PuTTY is a generic,
multiple-backend, remote VT-terminal client which happens to support one backend which is
larger, more popular and more useful than the rest. Any extra feature which can possibly be
general across all backends should be so: localising features unnecessarily into the SSH back
end is a design error. (For example, we had several code submissions for proxy support which
worked by hackingssh.c . Clearly this is completely wrong: thenetwork.h abstraction is
the place to put it, so that it will apply to all back ends equally, and indeed we eventually put it
there after another contributor sent a better patch.)

The rest of PuTTY should try to avoid knowing anything about specific back ends if at all
possible. To support a feature which is only available in one network protocol, for example, the
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back end interface should be extended in a general manner such thatanyback end which is able
to provide that feature can do so. If it so happens that only one back end actually does, that's
just the way it is, but it shouldn't be relied upon by any code.

E.3 Multiple sessions per process on some platforms
Some ports of PuTTY - notably the in-progress Mac port - are constrained by the operating
system to run as a single process potentially managing multiple sessions.

Therefore, the platform-independent parts of PuTTY never use global variables to store per-
session data. The global variables that do exist are tolerated because they are not specific to a
particular login session. The random number state insshrand.c , the timer list intiming.c
and the queue of top-level callbacks incallback.c serve all sessions equally. But most data
is specific to a particular network session, and is therefore stored in dynamically allocated data
structures, and pointers to these structures are passed around between functions.

Platform-specific code can reverse this decision if it likes. The Windows code, for historical
reasons, stores most of its data as global variables. That's OK, becauseon Windowswe know
there is only one session per PuTTY process, so it's safe to do that. But changes to the platform-
independent code should avoid introducing global variables, unless they are genuinely cross-
session.

E.4 C, not C++
PuTTY is written entirely in C, not in C++.

We have madesomeeffort to make it easy to compile our code using a C++ compiler: notably,
our snew, snewn and sresize macros explicitly cast the return values ofmalloc and
realloc to the target type. (This has type checking advantages even in C: it means you never
accidentally allocate the wrong size piece of memory for the pointer type you're assigning it to.
C++ friendliness is really a side benefit.)

We want PuTTY to continue being pure C, at least in the platform-independent parts and the
currently existing ports. Patches which switch the Makefiles to compile it as C++ and start using
classes will not be accepted.

The one exception: a port to a new platform may use languages other than C if they are necessary
to code on that platform. If your favourite PDA has a GUI with a C++ API, then there's no
way you can do a port of PuTTY without using C++, so go ahead and use it. But keep the C++
restricted to that platform's subdirectory; if your changes force the Unix or Windows ports to
be compiled as C++, they will be unacceptable to us.

E.5 Security-conscious coding
PuTTY is a network application and a security application. Assume your code will end up being
fed deliberately malicious data by attackers, and try to code in a way that makes it unlikely to
be a security risk.

In particular, try not to use fixed-size buffers for variable-size data such as strings received from
the network (or even the user). We provide functions such asdupcat anddupprintf , which
dynamically allocate buffers of the right size for the string they construct. Use these wherever
possible.
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E.6 Independence of specific compiler
Windows PuTTY can currently be compiled with any of three Windows compilers: MS Visual
C, the Cygwin /mingw32 GNU tools, andclang (in MS compatibility mode).

This is a really useful property of PuTTY, because it means people who want to contribute to
the coding don't depend on having a specific compiler; so they don't have to fork out money
for MSVC if they don't already have it, but on the other hand if theydo have it they also don't
have to spend effort installinggcc alongside it. They can use whichever compiler they happen
to have available, or install whichever is cheapest and easiest if they don't have one.

Therefore, we don't want PuTTY to start depending on which compiler you're using. Using GNU
extensions to the C language, for example, would ruin this useful property (not that anyone's
ever tried it!); and more realistically, depending on an MS-specific library function supplied by
the MSVC C library (_snprintf , for example) is a mistake, because that function won't be
available under the other compilers. Any function supplied in an official Windows DLL as part of
the Windows API is fine, and anything defined in the C library standard is also fine, because those
should be available irrespective of compilation environment. But things in between, available
as non-standard library and language extensions in only one compiler, are disallowed.

(_snprintf in particular should be unnecessary, since we providedupprintf ; see section
E.5.)

Compiler independence should apply on all platforms, of course, not just on Windows.

E.7 Small code size
PuTTY is tiny, compared to many other Windows applications. And it's easy to install: it depends
on no DLLs, no other applications, no service packs or system upgrades. It's just one executable.
You install that executable wherever you want to, and run it.

We want to keep both these properties - the small size, and the ease of installation - if at all
possible. So code contributions that depend critically on external DLLs, or that add a huge
amount to the code size for a feature which is only useful to a small minority of users, are likely
to be thrown out immediately.

We do vaguely intend to introduce a DLL plugin interface for PuTTY, whereby seriously large
extra features can be implemented in plugin modules. The important thing, though, is that those
DLLs will be optional; if PuTTY can't find them on startup, it should run perfectly happily and
just won't provide those particular features. A full installation of PuTTY might one day contain
ten or twenty little DLL plugins, which would cut down a little on the ease of installation - but
if you really needed ease of installation youcouldstill just install the one PuTTY binary, or just
the DLLs you really needed, and it would still work fine.

Depending onexternalDLLs is something we'd like to avoid if at all possible (though for some
purposes, such as complex SSH authentication mechanisms, it may be unavoidable). If it can't
be avoided, the important thing is to follow the same principle of graceful degradation: if a DLL
can't be found, then PuTTY should run happily and just not supply the feature that depended on
it.

E.8 Single-threaded code
PuTTY and its supporting tools, or at least the vast majority of them, run in only one OS thread.
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This means that if you're devising some piece of internal mechanism, there's no need to use locks
to make sure it doesn't get called by two threads at once. The only way code can be called re-
entrantly is by recursion.

That said, most of Windows PuTTY's network handling is triggered off Windows messages
requested byWSAAsyncSelect() , so if you call MessageBox() deep within some
network event handling code you should be aware that you might be re-entered if a network
event comes in and is passed on to our window procedure by theMessageBox() message
loop.

Also, the front ends can use multiple threads if they like. For example, the Windows front-
end code spawns subthreads to deal with bidirectional blocking I/O on non-network streams
such as Windows pipes. However, it keeps tight control of its auxiliary threads, and uses
them only for that one purpose, as a form ofselect() . Pretty much all the code outside
windows/handle-io.c isonlyever called from the one primary thread; the others just loop
round blocking on file handles, and signal the main thread (via Windows event objects) when
some real work needs doing. This is not considered a portability hazard because that code is
already Windows-specific and needs rewriting on other platforms.

One important consequence of this: PuTTY has only one thread in which to do everything.
That ‘everything’ may include managing more than one login session (section E.3), managing
multiple data channels within an SSH session, responding to GUI events even when nothing is
happening on the network, and responding to network requests from the server (such as repeat
key exchange) even when the program is dealing with complex user interaction such as the re-
configuration dialog box. This means thatalmost noneof the PuTTY code can safely block.

E.9 Keystrokes sent to the server wherever possible

In almost all cases, PuTTY sends keystrokes to the server. Even weird keystrokes that you think
should be hot keys controlling PuTTY. Even Alt-F4 or Alt-Space, for example. If a keystroke
has a well-defined escape sequence that it could usefully be sending to the server, then it should
do so, or at the very least it should be configurably able to do so.

To unconditionally turn a key combination into a hot key to control PuTTY is almost always a
design error. If a hot key is really truly required, then try to find a key combination for it which
isn't already used in existing PuTTYs (either it sends nothing to the server, or it sends the same
thing as some other combination). Even then, be prepared for the possibility that one day that
key combination might end up being needed to send something to the server - so make sure that
there's an alternative way to invoke whatever PuTTY feature it controls.

E.10 640×480 friendliness in configuration panels

There's a reason we have lots of tiny configuration panels instead of a few huge ones, and that
reason is that not everyone has a 1600×1200 desktop. 640×480 is still a viable resolution for
running Windows (and indeed it's still the default if you start up in safe mode), so it's still a
resolution we care about.

Accordingly, the PuTTY configuration box, and the PuTTYgen control window, are deliberately
kept just small enough to fit comfortably on a 640×480 display. If you're adding controls to
either of these boxes and you find yourself wanting to increase the size of the whole box,don't.
Split it into more panels instead.
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E.11 Coroutines in protocol code

Large parts of the code in modules implementing wire protocols (mainly SSH) are structured
using a set of macros that implement (something close to) Donald Knuth's ‘coroutines’ concept
in C.

Essentially, the purpose of these macros are to arrange that a function can callcrReturn()
to return to its caller, and the next time it is called control will resume from just after that
crReturn statement.

This means that any local (automatic) variables declared in such a function will be corrupted
every time you callcrReturn . If you need a variable to persist for longer than that, youmust
make it a field in some appropriate structure containing the persistent state of the coroutine –
typically the main state structure for a protocol layer.

See
https://www.chiark.greenend.org.uk/~sgtatham/coroutines.html for
a more in-depth discussion of what these macros are for and how they work.

Another caveat: most of these coroutines are notguaranteedto run to completion, because
the SSH connection (or whatever) that they're part of might be interrupted at any time by an
unexpected network event or user action. So whenever a coroutine-managed variable refers to a
resource that needs releasing, you should also ensure that the cleanup function for its containing
state structure can reliably release it even if the coroutine is aborted at an arbitrary point.

For example, if an SSH packet protocol layer has to have a field that sometimes points to a
piece of allocated memory, then you should ensure that when you free that memory you reset
the pointer field toNULL. Then, no matter when the protocol layer's cleanup function is called,
it can reliably free the memory if there is any, and not crash if there isn't.

E.12 Explicit vtable structures to implement traits

A lot of PuTTY's code is written in a style that looks structurally rather like an object-oriented
language, in spite of PuTTY being a pure C program.

For example, there's a single data type calledssh_hash , which is an abstraction of a secure
hash function, and a bunch of functions called things likessh_hash_ foo that do things with
those data types. But in fact, PuTTY supports many different hash functions, and each one has
to provide its own implementation of those functions.

In C++ terms, this is rather like having a single abstract base class, and multiple concrete
subclasses of it, each of which fills in all the pure virtual methods in a way that's compatible
with the data fields of the subclass. The implementation is more or less the same, as well: in C,
we do explicitly in the source code what the C++ compiler will be doing behind the scenes at
compile time.

But perhaps a closer analogy in functional terms is the Rust concept of a ‘trait’, or the Java idea
of an ‘interface’. C++ supports a multi-level hierarchy of inheritance, whereas PuTTY's system
– like traits or interfaces – has only two levels, one describing a generic object of a type (e.g. a
hash function) and another describing a specific implementation of that type (e.g. SHA-256).

The PuTTY code base has a standard idiom for doing this in C, as follows.
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Firstly, we define twostruct types for our trait. One of them describes a particularkind of
implementation of that trait, and it's full of (mostly) function pointers. The other describes a
specificinstanceof an implementation of that trait, and it will contain a pointer to aconst
instance of the first type. For example:

typedef struct MyAbstraction MyAbstraction;
typedef struct MyAbstractionVtable MyAbstractionVtable;

struct MyAbstractionVtable {
    MyAbstraction *(*new)(const MyAbstractionVtable *vt);
    void (*free)(MyAbstraction *);
    void (*modify)(MyAbstraction *, unsigned some_parameter);
    unsigned (*query)(MyAbstraction *, unsigned some_parameter);
};

struct MyAbstraction {
    const MyAbstractionVtable *vt;
};

Here, we imagine thatMyAbstraction might be some kind of object that contains
mutable state. The associated vtable structure shows what operations you can perform on a
MyAbstraction : you can create one (dynamically allocated), free one you already have, or
call the example methods ‘modify’ (to change the state of the object in some way) and ‘query’
(to return some value derived from the object's current state).

(In most cases, the vtable structure has a name ending in ‘vtable ’. But for historical reasons
a lot of the crypto primitives that use this scheme – ciphers, hash functions, public key methods
and so on – instead have names ending in ‘alg ’, on the basis that the primitives they implement
are often referred to as ‘encryption algorithms’, ‘hash algorithms’ and so forth.)

Now, to define a concrete instance of this trait, you'd define astruct that contains a
MyAbstraction field, plus any other data it might need:

struct MyImplementation {
    unsigned internal_data[16];
    SomeOtherType *dynamic_subthing;

    MyAbstraction myabs;
};

Next, you'd implement all the necessary methods for that implementation of the trait, in this
kind of style:

static MyAbstraction *myimpl_new(const MyAbstractionVtable *vt)
{
    MyImplementation *impl = snew(MyImplementation);
    memset(impl, 0, sizeof(*impl));
    impl->dynamic_subthing = allocate_some_other_type();
    impl->myabs.vt = vt;
    return &impl->myabs;
}
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static void myimpl_free(MyAbstraction *myabs)
{
    MyImplementation *impl = container_of(myabs, MyImplementation, myabs);
    free_other_type(impl->dynamic_subthing);
    sfree(impl);
}

static void myimpl_modify(MyAbstraction *myabs, unsigned param)
{
    MyImplementation *impl = container_of(myabs, MyImplementation, myabs);
    impl->internal_data[param] += do_something_with(impl->dynamic_subthing);
}

static unsigned myimpl_query(MyAbstraction *myabs, unsigned param)
{
    MyImplementation *impl = container_of(myabs, MyImplementation, myabs);
    return impl->internal_data[param];
}

Having defined those methods, now we can define aconst instance of the vtable structure
containing pointers to them:

const MyAbstractionVtable MyImplementation_vt = {
    .new = myimpl_new,
    .free = myimpl_free,
    .modify = myimpl_modify,
    .query = myimpl_query,
};

In principle, this is all you need. Client code can construct a new instance of a particular
implementation ofMyAbstraction by digging out thenew method from the vtable and
calling it (with the vtable itself as a parameter), which returns aMyAbstraction *
pointer that identifies a newly created instance, in which thevt field will contain a pointer
to the same vtable structure you passed in. And once you have an instance object, say
MyAbstraction *myabs , you can dig out one of the other method pointers from the vtable
it points to, and call that, passing the object itself as a parameter.

But in fact, we don't do that, because it looks pretty ugly at all the call sites. Instead, what we
generally do in this code base is to write a set ofstatic inline wrapper functions in the
same header file that defined theMyAbstraction structure types, like this:

static inline MyAbstraction *myabs_new(const MyAbstractionVtable *vt)
{ return vt->new(vt); }
static inline void myabs_free(MyAbstraction *myabs)
{ myabs->vt->free(myabs); }
static inline void myimpl_modify(MyAbstraction *myabs, unsigned param)
{ myabs->vt->modify(myabs, param); }
static inline unsigned myimpl_query(MyAbstraction *myabs, unsigned param)
{ return myabs->vt->query(myabs, param); }

And now call sites can use those reasonably clean-looking wrapper functions, and shouldn't ever
have to directly refer to thevt field inside anymyabs object they're holding. For example, you
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might write something like this:

MyAbstraction *myabs = myabs_new(&MyImplementation_vtable);
myabs_update(myabs, 10);
unsigned output = myabs_query(myabs, 2);
myabs_free(myabs);

and then all this code can use a different implementation of the same abstraction by just changing
which vtable pointer it passed in in the first line.

Some things to note about this system:

• The implementation instance type (here ‘MyImplementation ’ contains the abstraction
type (‘MyAbstraction ’) as one of its fields. But that field is not necessarily at the start of
the structure. So you can't justcastpointers back and forth between the two types. Instead:

• You ‘up-cast’ from implementation to abstraction by taking the address of the
MyAbstraction field. You can see the examplenew method above doing this,
returning&impl->myabs . All new methods do this on return.

• Going in the other direction, each method that was passed a generic
MyAbstraction *myabs parameter has to recover a pointer to the specific
implementation typeMyImplementation *impl . The idiom for doing that is
to use the ‘container_of ’ macro, also seen in the Linux kernel code. Generally,
container_of(p, Type, field) says: ‘I'm confident that the pointer value
‘p’ is pointing to the field called ‘field ’ within a largerstruct of type Type .
Please return me the pointer to the containing structure.’ So in this case, we take the
‘myabs’ pointer passed to the function, and ‘down-cast’ it into a pointer to the larger
and more specific structure typeMyImplementation , by adjusting the pointer
value based on the offset within that structure of the field called ‘myabs’.

This system is flexible enough to permit ‘multiple inheritance’, or rather, multiple
implementation: having one object type implement more than one trait. For example, the
ProxySocket type implements both theSocket trait and thePlug trait that connects
to it, because it has to act as an adapter between another instance of each of those types.

It's also perfectly possible to have the same object implement thesametrait in two different
ways. At the time of writing this I can't think of any case where we actually do this,
but a theoretical example might be if you needed to support a trait likeComparable in
two ways that sorted by different criteria. There would be no difficulty doing this in the
PuTTY system: simply have your implementationstruct contain two (or more) fields
of the same abstraction type. The fields will have different names, which makes it easy to
explicitly specify which one you're returning a pointer to during up-casting, or which one
you're down-casting from usingcontainer_of . And then both sets of implementation
methods can recover a pointer to the same containing structure.

• Unlike in C++, all objects in PuTTY that use this system are dynamically allocated. The
‘constructor’ functions (whether they're virtualised across the whole abstraction or specific
to each implementation) always allocate memory and return a pointer to it. The ‘free’
method (our analogue of a destructor) always expects the input pointer to be dynamically
allocated, and frees it. As a result, client code doesn't need to know how large the
implementing object type is, because it will never need to allocate it (on the stack or
anywhere else).
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• Unlike in C++, the abstraction's ‘vtable’ structure does not only hold methods that you can
call on an instance object. It can also hold several other kinds of thing:

• Methods that you can callwithoutan instance object, given only the vtable structure
identifying a particular implementation of the trait. You might think of these as ‘static
methods’, as in C++, except that they'revirtual – the same code can call the static
method of a different ‘class’ given a different vtable pointer. So they're more like
‘virtual static methods’, which is a concept C++ doesn't have. An example is the
pubkey_bits method inssh_keyalg .

• The most important case of a ‘virtual static method’ is thenew method that allocates
and returns a new object. You can think of it as a ‘virtual constructor’ – another concept
C++ doesn't have. (However, not all types need one of these: see below.)

• The vtable can also contain constant data relevant to the class as a whole – ‘virtual
constant data’. For example, a cryptographic hash function will contain an integer field
giving the length of the output hash, and most crypto primitives will contain a string
field giving the identifier used in the SSH protocol that describes that primitive.

The effect of all of this is that you can make other pieces of code able to use any instance
of one of these types, by passing it an actual vtable as a parameter. For example, the
hash_simple function takes anssh_hashalg vtable pointer specifying any hash
algorithm you like, and internally, it creates an object of that type, uses it, and frees it.
In C++, you'd probably do this using a template, which would mean you had multiple
specialisations ofhash_simple – and then it would be much more difficult to decide
at run timewhich one you needed to use. Here,hash_simple is still just one function,
and you can decide as late as you like which vtable to pass to it.

• The abstractinstancestructure can also contain publicly visible data fields (this time,
usually treated as mutable) which are common to all implementations of the trait. For
example,BinaryPacketProtocol has lots of these.

• Not all abstractions of this kind want virtual constructors. It depends on how different the
implementations are.

With a crypto primitive like a hash algorithm, the constructor call looks the same for
every implementing type, so it makes sense to have a standardised virtual constructor
in the vtable and assh_hash_new wrapper function which can make an instance
of whatever vtable you pass it. And then you make all the vtable objects themselves
globally visible throughout the source code, so that any module can call (for example)
ssh_hash_new(&ssh_sha256) .

But with other kinds of object, the constructor for each implementing type has to take a
different set of parameters. For example, implementations ofSocket are not generally
interchangeable at construction time, because constructing different kinds of socket require
totally different kinds of address parameter. In that situation, it makes more sense to keep
the vtable structure itself private to the implementing source file, and instead, publish
an ordinary constructing function that allocates and returns an instance of that particular
subtype, taking whatever parameters are appropriate to that subtype.

• If you do have virtual constructors, you can choose whether they take a vtable pointer as a
parameter (as shown above), or anexistinginstance object. In the latter case, they can refer
to the object itself as well as the vtable. For example, you could have a trait come with a
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virtual constructor called ‘clone’, meaning ‘Make a copy of this object, no matter which
implementation it is.’

• Sometimes, a single vtable structure type can be shared between two completely
different object types, and contain all the methods for both. For example,
ssh_compression_alg contains methods to create, use and freessh_compressor
and ssh_decompressor objects, which are not interchangeable – but putting their
methods in the same vtable means that it's easy to create a matching pair of objects that
are compatible with each other.

• Passing the vtable itself as an argument to thenew method is not compulsory: if a given
new implementation is only used by a single vtable, then that function can simply hard-
code the vtable pointer that it writes into the object it constructs. But passing the vtable is
more flexible, because it allows a single constructor function to be shared between multiple
slightly different object types. For example, SHA-384 and SHA-512 share the samenew
method and the same implementation data type, because they're very nearly the same hash
algorithm – but a couple of the other methods in their vtables are different, because the
‘reset’ function has to set up the initial algorithm state differently, and the ‘digest’ method
has to write out a different amount of data.

One practical advantage of having themyabs_ foo family of inline wrapper functions in
the header file is that if you change your mind later about whether the vtable needs to be
passed tonew, you only have to update themyabs_new wrapper, and then the existing
call sites won't need changing.

• Another piece of ‘stunt object orientation’ made possible by this scheme is that you can
write two vtables that both use the same structure layout for the implementation object, and
have an objecttransform from one to the otherpart way through its lifetime, by overwriting
its own vtable pointer field. For example, thesesschan type that handles the server
side of an SSH terminal session will sometimes transform in mid-lifetime into an SCP or
SFTP file-transfer channel in this way, at the point where the client sends an ‘exec ’ or
‘subsystem ’ request that indicates that that's what it wants to do with the channel.

This concept would be difficult to arrange in C++. In Rust, it wouldn't evenmake sense,
because in Rust, objects implementing a trait don't even contain a vtable pointer at all –
instead, the ‘trait object’ type (identifying a specific instance of some implementation of
a given trait) consists of a pair of pointers, one to the object itself and one to the vtable. In
that model, the only way you could make an existing object turn into a different trait would
be to know where all the pointers to it were stored elsewhere in the program, and persuade
all their owners to rewrite them.

• Another stunt you can do is to have a vtable that doesn't have a corresponding
implementation structure at all, because the only methods implemented in it are the
constructors, and they always end up returning an implementation of some other vtable.
For example, some of PuTTY's crypto primitives have a hardware-accelerated version and
a pure software version, and decide at run time which one to use (based on whether the
CPU they're running on supports the necessary acceleration instructions). So, for example,
there are vtables forssh_sha256_sw andssh_sha256_hw , each of which has its
own data layout and its own implementations of all the methods; and then there's a top-
level vtablessh_sha256 , which only provides the ‘new’ method, and implements it by
calling the ‘new’ method on one or other of the subtypes depending on what it finds out
about the machine it's running on. That top-level selector vtable is nearly always the one
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used by client code. (Except for the test suite, which has to instantiate both of the subtypes
in order to make sure they both pass the tests.)

As a result, the top-level selector vtablessh_sha256 doesn't need to implement any
method that takes anssh_cipher * parameter, because nossh_cipher object is ever
constructed whosevt field points to&ssh_sha256 : they all point to one of the other
two full implementation vtables.

E.13 Do as we say, not as we do
The current PuTTY code probably does not conform strictly toall of the principles listed
above. There may be the occasional SSH-specific piece of code in what should be a backend-
independent module, or the occasional dependence on a non-standard X library function under
Unix.

This should not be taken as a licence to go ahead and violate the rules. Where we violate
them ourselves, we're not happy about it, and we would welcome patches that fix any existing
problems. Please try to help us make our code better, not worse!
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Appendix F: PuTTY download keys and
signatures

We create GPG signatures for all the PuTTY files distributed from our web site, so that users can
be confident that the files have not been tampered with. Here we identify our public keys, and
explain our signature policy so you can have an accurate idea of what each signature guarantees.
This description is provided as both a web page on the PuTTY site, and an appendix in the
PuTTY manual.

As of release 0.58, all of the PuTTY executables contain fingerprint material (usually accessed
via the-pgpfp command-line option), such that if you have an executable you trust, you can
use it to establish a trust path, for instance to a newer version downloaded from the Internet.

As of release 0.67, the Windows executables and installer also contain built-in signatures that
are automatically verified by Windows' own mechanism (‘Authenticode’). The keys used for
that are different, and are not covered here.

(Note that none of the keys, signatures, etc mentioned here have anything to do with keys used
with SSH - they are purely for verifying the origin of files distributed by the PuTTY team.)

F.1 Public keys
We maintain multiple keys, stored with different levels of security due to being used in different
ways. See section F.2 below for details.

The keys we provide are:

Snapshot Key

Used to sign routine development builds of PuTTY: nightly snapshots, pre-releases, and
sometimes also custom diagnostic builds we send to particular users.

Release Key

Used to sign manually released versions of PuTTY.

Secure Contact Key

An encryption-capable key suitable for people to send confidential messages to the PuTTY
team, e.g. reports of vulnerabilities.

Master Key

Used to tie all the above keys into the GPG web of trust. The Master Key signs all the other
keys, and other GPG users have signed it in turn.
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The current issue of those keys are available for download from the PuTTY website, and are
also available on PGP keyservers using the key IDs listed below.

Master Key (2021)

RSA, 3072-bit. Key ID: DD4355EAAC1119DE. Fingerprint:
A872 D42F 1660 890F 0E05 223E DD43 55EA AC11 19DE

Release Key(2021)

RSA, 3072-bit. Key ID: E4F83EA2AA4915EC. Fingerprint:
2CF6 134B D3F7 7A65 88EB D668 E4F8 3EA2 AA49 15EC

Snapshot Key(2021)

RSA, 3072-bit. Key ID: B43979F89F446CFD . Fingerprint:
1FD3 BCAC E532 FBE0 6A8C 09E2 B439 79F8 9F44 6CFD

Secure Contact Key(2021)

RSA, 3072-bit. Key ID: 012C59D4211BD62A. Fingerprint:
E30F 1354 2A04 BE0E 56F0 5801 012C 59D4 211B D62A

F.2 Security details
The various keys have various different security levels. This section explains what those security
levels are, and how far you can expect to trust each key.

F.2.1 The Development Snapshots key

The Development Snapshots private key is storedwithout a passphrase. This is necessary,
because the snapshots are generated every night without human intervention, so nobody would
be able to type a passphrase.

The snapshots are built and signed on a team member's home computers, before being uploaded
to the web server from which you download them.

Therefore, a signature from the Development Snapshots keyDOESprotect you against:

• People tampering with the PuTTY binaries between the PuTTY web site and you.

• The maintainers of our web server attempting to abuse their root privilege to tamper with
the binaries.

But it DOES NOTprotect you against:

• People tampering with the binaries before they are uploaded to our download servers.

• People tampering with the build machines so that the next set of binaries they build will be
malicious in some way.

• People stealing the unencrypted private key from the build machine it lives on.

Of course, we take all reasonable precautions to guard the build machines. But when you see
a signature, you should always be certain of precisely what it guarantees and precisely what it
does not.
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F.2.2 The Releases key

The Releases key is more secure: because it is only used at release time, to sign each release by
hand, we can store it encrypted.

The Releases private key is kept encrypted on the developers' own local machines. So an attacker
wanting to steal it would have to also steal the passphrase.

F.2.3 The Secure Contact Key

The Secure Contact Key is stored with a similar level of security to the Release Key: it is stored
with a passphrase, and no automated script has access to it.

F.2.4 The Master Keys

The Master Key signs almost nothing. Its purpose is to bind the other keys together and certify
that they are all owned by the same people and part of the same integrated setup. The only
signatures produced by the Master Key,ever, should be the signatures on the other keys.

The Master Key is especially long, and its private key and passphrase are stored with special
care.

We have collected some third-party signatures on the Master Key, in order to increase the
chances that you can find a suitable trust path to them.

We have uploaded our various keys to public keyservers, so that even if you don't know any
of the people who have signed our keys, you can still be reasonably confident that an attacker
would find it hard to substitute fake keys on all the public keyservers at once.

F.3 Key rollover
Our current keys were generated in August 2018.

Each new Master Key is signed with the old one, to show that it really is owned by the same
people and not substituted by an attacker.

Each new Master Key also signs the previous Release Keys, in case you're trying to verify the
signatures on a release prior to the rollover and can find a chain of trust to those keys from any
of the people who have signed our new Master Key.

Each release is signed with the Release Key that was current at the time of release. We don't go
back and re-sign old releases with newly generated keys.

The details of all previous keys are given here.

Keys generated in the 2018 rollover

Master Key (2018)

RSA, 4096-bit. Key ID: 76BC7FE4EBFD2D9E. Fingerprint:
24E1 B1C5 75EA 3C9F F752  A922 76BC 7FE4 EBFD 2D9E

Release Key(2018)

RSA, 3072-bit. Key ID: 6289A25F4AE8DA82. Fingerprint:
E273 94AC A3F9 D904 9522  E054 6289 A25F 4AE8 DA82
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Snapshot Key(2018)

RSA, 3072-bit. Key ID: 38BA7229B7588FD1 . Fingerprint:
C92B 52E9 9AB6 1DDA 33DB  2B7A 38BA 7229 B758 8FD1

Secure Contact Key(2018)

RSA, 3072-bit. Key ID: 657D487977F95C98 . Fingerprint:
A680 0082 2998 6E46 22CA  0E43 657D 4879 77F9 5C98

Key generated in 2016(when we first introduced the Secure Contact Key)

Secure Contact Key(2016)

RSA, 2048-bit. Main key ID: 2048R/8A0AF00B (long
version: 2048R/C4FCAAD08A0AF00B). Encryption subkey ID:
2048R/50C2CF5C (long version: 2048R/9EB39CC150C2CF5C). Fingerprint:
8A26 250E 763F E359 75F3  118F C4FC AAD0 8A0A F00B

Keys generated in the 2015 rollover

Master Key (2015)

RSA, 4096-bit. Key ID: 4096R/04676F7C
(long version: 4096R/AB585DC604676F7C ). Fingerprint:
440D E3B5 B7A1 CA85 B3CC  1718 AB58 5DC6 0467 6F7C

Release Key(2015)

RSA, 2048-bit. Key ID: 2048R/B43434E4
(long version: 2048R/9DFE2648B43434E4 ). Fingerprint:
0054 DDAA 8ADA 15D2 768A  6DE7 9DFE 2648 B434 34E4

Snapshot Key(2015)

RSA, 2048-bit. Key ID: 2048R/D15F7E8A
(long version: 2048R/EEF20295D15F7E8A ). Fingerprint:
0A3B 0048 FE49 9B67 A234  FEB6 EEF2 0295 D15F 7E8A

Original keys generated in 2000(two sets, RSA and DSA)

Master Key (original RSA)

RSA, 1024-bit. Key ID: 1024R/1E34AC41
(long version: 1024R/9D5877BF1E34AC41 ). Fingerprint:
8F 15 97 DA 25 30 AB 0D  88 D1 92 54 11 CF 0C 4C

Master Key (original DSA)

DSA, 1024-bit. Key ID: 1024D/6A93B34E
(long version: 1024D/4F5E6DF56A93B34E ). Fingerprint:
313C 3E76 4B74 C2C5 F2AE  83A8 4F5E 6DF5 6A93 B34E

Release Key(original RSA)

RSA, 1024-bit. Key ID: 1024R/B41CAE29
(long version: 1024R/EF39CCC0B41CAE29). Fingerprint:
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AE 65 D3 F7 85 D3 18 E0  3B 0C 9B 02 FF 3A 81 FE

Release Key(original DSA)

DSA, 1024-bit. Key ID: 1024D/08B0A90B
(long version: 1024D/FECD6F3F08B0A90B ). Fingerprint:
00B1 1009 38E6 9800 6518  F0AB FECD 6F3F 08B0 A90B

Snapshot Key(original RSA)

RSA, 1024-bit. Key ID: 1024R/32B903A9
(long version: 1024R/FAAED21532B903A9 ). Fingerprint:
86 8B 1F 79 9C F4 7F BD  8B 1B D7 8E C6 4E 4C 03

Snapshot Key(original DSA)

DSA, 1024-bit. Key ID: 1024D/7D3E4A00
(long version: 1024D/165E56F77D3E4A00 ). Fingerprint:
63DD 8EF8 32F5 D777 9FF0  2947 165E 56F7 7D3E 4A00
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Appendix G: SSH-2 names specified for PuTTY

There are various parts of the SSH-2 protocol where things are specified using a textual name.
Names ending in@putty.projects.tartarus.org are reserved for allocation by the
PuTTY team. Allocated names are documented here.

G.1 Connection protocol channel request names
These names can be sent in aSSH_MSG_CHANNEL_REQUESTmessage.

simple@putty.projects.tartarus.org

This is sent by a client to announce that it will not have more than one channel open at a
time in the current connection (that one being the one the request is sent on). The intention
is that the server, knowing this, can set the window on that one channel to something very
large, and leave flow control to TCP. There is no message-specific data.

winadj@putty.projects.tartarus.org

PuTTY sends this request along with someSSH_MSG_CHANNEL_WINDOW_ADJUST
messages as part of its window-size tuning. It can be sent on any type of channel. There is
no message-specific data. Servers MUST treat it as an unrecognised request and respond
with SSH_MSG_CHANNEL_FAILURE.

(Some SSH servers get confused by this message, so there is a bug-compatibility mode for
disabling it. See section 4.27.3.)

G.2 Key exchange method names
rsa-sha1-draft-00@putty.projects.tartarus.org

rsa-sha256-draft-00@putty.projects.tartarus.org

rsa1024-sha1-draft-01@putty.projects.tartarus.org

rsa1024-sha256-draft-01@putty.projects.tartarus.org

rsa2048-sha256-draft-01@putty.projects.tartarus.org

rsa1024-sha1-draft-02@putty.projects.tartarus.org

rsa2048-sha512-draft-02@putty.projects.tartarus.org

rsa1024-sha1-draft-03@putty.projects.tartarus.org

rsa2048-sha256-draft-03@putty.projects.tartarus.org

rsa1024-sha1-draft-04@putty.projects.tartarus.org
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rsa2048-sha256-draft-04@putty.projects.tartarus.org

These appeared in various drafts of what eventually became RFC 4432. They have been
superseded byrsa1024-sha1 andrsa2048-sha256 .

G.3 Encryption algorithm names
arcfour128-draft-00@putty.projects.tartarus.org

arcfour256-draft-00@putty.projects.tartarus.org

These were used in drafts of what eventually became RFC 4345. They have been
superseded byarcfour128 andarcfour256 .

G.4 Agent extension request names
The SSH agent protocol, which is only specified in an Internet-Draft at the time of writing
(draft-miller-ssh-agent ), defines an extension mechanism. These names can be sent
in anSSH_AGENTC_EXTENSIONmessage.

add-ppk@putty.projects.tartarus.org

The payload is a single SSH-2string containing a keypair in the PPK format defined in
appendix C. Compared to the standardSSH_AGENTC_ADD_IDENTITY, this extension
allows adding keys in encrypted form, with the agent requesting a decryption passphrase
from the user on demand, and able to revert the key to encrypted form.

reencrypt@putty.projects.tartarus.org

The payload is a single SSH-2string specifying a public key blob, as in
SSH_AGENTC_REMOVE_IDENTITY. Requests that the agent forget any cleartext form
of a specific key.

ReturnsSSH_AGENT_SUCCESSif the agent ended up holding the key only in encrypted
form (even if it was already encrypted); returnsSSH_AGENT_EXTENSION_FAILURE
if not (if it wasn't held by the agent at all, or only in cleartext form).

reencrypt-all@putty.projects.tartarus.org

No payload. Requests that the agent forget the cleartext form of any keys for which it holds
an encrypted form.

If the agent holds any keys with an encrypted form (or no keys at all), returns
SSH_AGENT_SUCCESSto indicate that no such keys are now held in cleartext form,
followed by auint32 specifying how many keys remain in cleartext form (because the
agent didn't hold an encrypted form for them). If the agent holds nothing but keys in
cleartext form, returnsSSH_AGENT_EXTENSION_FAILURE.

list-extended@putty.projects.tartarus.org

No payload. ReturnsSSH_AGENT_SUCCESSfollowed by a list of identities similar
to SSH_AGENT_IDENTITIES_ANSWER, except that each key has an extra SSH-2
string at the end. Currently thatstring contains a singleuint32 flags word, with
the following bits defined:
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Bit 0

If set, key is held with an encrypted form (so that thereencrypt extension can do
something useful with it).

Bit 1

If set, key's cleartext form is not currently held (so the user will have to supply a
passphrase before the key can be used).
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Appendix H: PuTTY authentication plugin
protocol

This appendix contains the specification for the protocol spoken over local IPC between PuTTY
and an authentication helper plugin.

If you already have an authentication plugin and want to configure PuTTY to use it, see section
4.22.3 for how to do that. This appendix is for people writing new authentication plugins.

H.1 Requirements
The following requirements informed the specification of this protocol.

Automate keyboard-interactive authentication. We're motivated in the first place by the
observation that the general SSH userauth method ‘keyboard-interactive ’ (defined in
[RFC4256]) can be used for many kinds of challenge/response or one-time-password styles of
authentication, and in more than one of those, the necessary responses might be obtained from
an auxiliary network connection, such as an HTTPS transaction. So it's useful if a user doesn't
have to manually copy-type or copy-paste from their web browser into their SSH client, but
instead, the process can be automated.

Be able to pass prompts on to the user.On the other hand, some userauth methods can be only
partially automated; some of the server's prompts might still require human input. Also, the
plugin automating the authentication might need to ask its own questions that are not provided
by the SSH server. (For example, ‘please enter the master key that the real response will be
generated by hashing’.) So after the plugin intercepts the server's questions, it needs to be able
to ask its own questions of the user, which may or may not be the same questions sent by the
server.

Allow automatic generation of the username.Sometimes, the authentication method comes
with a mechanism for discovering the username to be used in the SSH login. So the plugin has
to start up early enough that the client hasn't committed to a username yet.

Future expansion route to other SSH userauth flavours.The initial motivation for this
protocol is specific to keyboard-interactive. But other SSH authentication methods exist, and
they may also benefit from automation in future. We're making no attempt here to predict what
those methods might be or how they might be automated, but we do need to leave a space where
they can be slotted in later if necessary.

Minimal information loss. Keyboard-interactive prompts and replies should be passed to and
from the plugin in a form as close as possible to the way they look on the wire in SSH itself.
Therefore, the protocol resembles SSH in its data formats and marshalling (instead of, for
example, translating from SSH binary packet style to another well-known format such as JSON,
which would introduce edge cases in character encoding).
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Half-duplex. Simultaneously trying to read one I/O stream and write another adds a lot of
complexity to software. It becomes necessary to have an organised event loop containing
select or WaitForMultipleObjects or similar, which can invoke the handler for
whichever event happens soonest. There's no need to add that complexity in an application like
this, which isn't transferring large amounts of bulk data or multiplexing unrelated activities. So,
to keep life simple for plugin authors, we set the ground rule that it must always be 100% clear
which side is supposed to be sending a message next. That way, the plugin can be written as
sequential code progressing through the protocol, making simple read and write calls to receive
or send each message.

Communicate success/failure, to facilitate caching in the plugin.A plugin might want to
cache recently used data for next time, but only in the case where authentication using that data
was actually successful. So the client has to tell the plugin what the outcome was, if it's known.
(But this is best-effort only. Obviously the plugin cannotdependon hearing the answer, because
any IPC protocol at all carries the risk that the other end might crash or be killed by things
outside its control.)

H.2 Transport and configuration
Plugins are executable programs on the client platform.

The SSH client must be manually configured to use a plugin for a particular connection. The
configuration takes the form of a command line, including the location of the plugin executable,
and optionally command-line arguments that are meaningful to the particular plugin.

The client invokes the plugin as a subprocess, passing it a pair of 8-bit-clean pipes as its standard
input and output. On those pipes, the client and plugin will communicate via the protocol
specified below.

H.3 Data formats and marshalling
This protocol borrows the low-level data formatting from SSH itself, in particular the following
wire encodings from [RFC4251] section 5:

byte

An integer between 0 and 0xFF inclusive, transmitted as a single byte of binary data.

boolean

The values ‘true’ or ‘false’, transmitted as the bytes 1 and 0 respectively.

uint32

An integer between 0 and 0xFFFFFFFF inclusive, transmitted as 4 bytes of binary data, in
big-endian (‘network’) byte order.

string

A sequence of bytes, preceded by auint32 giving the number of bytes in the sequence.
The length field does not include itself. For example, the empty string is represented by
four zero bytes (theuint32 encoding of 0); the string "AB" is represented by the six bytes
0,0,0,2,'A','B'.
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Unlike SSH itself, the protocol spoken between the client and the plugin is unencrypted, because
local inter-process pipes are assumed to be secured by the OS kernel. So the binary packet
protocol is much simpler than SSH proper, and is similar to SFTP and the OpenSSH agent
protocol.

The data sent in each direction of the conversation consists of a sequence ofmessagesexchanged
between the SSH client and the plugin. Each message is encoded as astring. The contents of
the string begin with abyte giving the message type, which determines the format of the rest
of the message.

H.4 Protocol versioning
This protocol itself is versioned. At connection setup, the client states the highest version number
it knows how to speak, and then the plugin responds by choosing the version number that will
actually be spoken (which may not be higher than the client's value).

Including a version number makes it possible to make breaking changes to the protocol later.

Even version numbers represent released versions of this spec. Odd numbers represent drafts
or development versions in between releases. A client and plugin negotiating an odd version
number are not guaranteed to interoperate; the developer testing the combination is responsible
for ensuring the two are compatible.

This document describes version 2 of the protocol, the first released version. (The initial drafts
had version 1.)

H.5 Overview and sequence of events
At the very beginning of the user authentication phase of SSH, the client launches the plugin
subprocess, if one is configured. It immediately sends thePLUGIN_INIT message, telling the
plugin some initial information about where the SSH connection is to.

The plugin responds withPLUGIN_INIT_RESPONSE, which may optionally tell the SSH
client what username to use.

The client begins trying to authenticate with the SSH server in the usual way, using the username
provided by the plugin (if any) or alternatively one obtained via its normal (non-plugin) policy.

The client follows its normal policy for selecting authentication methods to attempt. If it chooses
a method that this protocol does not cover, then the client will perform that method in its own
way without consulting the plugin.

However, if the client and server decide to attempt a method that this protocoldoescover, then
the client sendsPLUGIN_PROTOCOLspecifying the SSH protocol id for the authentication
method being used. The plugin responds withPLUGIN_PROTOCOL_ACCEPTif it's willing to
assist with this auth method, orPLUGIN_PROTOCOL_REJECTif it isn't.

If the plugin sendsPLUGIN_PROTOCOL_REJECT, then the client will proceed as if the plugin
were not present. Later, if another auth method is negotiated (either because this one failed, or
because it succeeded but the server wants multiple auth methods), the client may send a further
PLUGIN_PROTOCOLand try again.

If the plugin sendsPLUGIN_PROTOCOL_ACCEPT, then a protocol segment begins
that is specific to that auth method, terminating in eitherPLUGIN_AUTH_SUCCESS
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or PLUGIN_AUTH_FAILURE. After that, again, the client may send a further
PLUGIN_PROTOCOL.

Currently the only supported method is ‘keyboard-interactive ’, defined in [RFC4256].
Once the client has announced this to the server, the followup protocol is as follows:

Each time the server sends anSSH_MSG_USERAUTH_INFO_REQUESTmessage requesting
authentication responses from the user, the SSH client translates the message into
PLUGIN_KI_SERVER_REQUESTand passes it on to the plugin.

At this point, the plugin may optionally send backPLUGIN_KI_USER_REQUESTcontaining
prompts to be presented to the actual user. The client will reply with a matching
PLUGIN_KI_USER_RESPONSEafter asking the user to reply to the question(s) in the request
message. The plugin can repeat this cycle multiple times.

Once the plugin has all the information it needs to respond to the server's authentication
prompts, it sendsPLUGIN_KI_SERVER_RESPONSEback to the client, which translates it
into SSH_MSG_USERAUTH_INFO_RESPONSEto send on to the server.

After that, as described in [RFC4256], the server is free to accept
authentication, reject it, or send anotherSSH_MSG_USERAUTH_INFO_REQUEST. Each
SSH_MSG_USERAUTH_INFO_REQUESTis dealt with in the same way as above.

If the server terminates keyboard-interactive authentication with
SSH_MSG_USERAUTH_SUCCESSor SSH_MSG_USERAUTH_FAILURE, the client informs
the plugin by sending eitherPLUGIN_AUTH_SUCCESSor PLUGIN_AUTH_FAILURE.
PLUGIN_AUTH_SUCCESSis sent whenthat particular authentication methodwas successful,
regardless of whether the SSH server chooses to request further authentication afterwards: in
particular,SSH_MSG_USERAUTH_FAILUREwith the ‘partial success’ flag (see [RFC4252]
section 5.1) translates intoPLUGIN_AUTH_SUCCESS.

The plugin's standard input will close when the client no longer requires the plugin's services,
for any reason. This could be because authentication is complete (with overall success or overall
failure), or because the user has manually aborted the session in mid-authentication, or because
the client crashed.

H.6 Message formats
This section describes the format of every message in the protocol.

As described in section H.3, every message starts with the same two fields:

• uint32: overall length of the message

• byte: message type.

The length field does not include itself, but does include the type code.

The following subsections each give the format of the remainder of the message, after the type
code.

The type codes themselves are defined here:

#define PLUGIN_INIT                   1
#define PLUGIN_INIT_RESPONSE          2
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#define PLUGIN_PROTOCOL               3
#define PLUGIN_PROTOCOL_ACCEPT        4
#define PLUGIN_PROTOCOL_REJECT        5
#define PLUGIN_AUTH_SUCCESS           6
#define PLUGIN_AUTH_FAILURE           7
#define PLUGIN_INIT_FAILURE           8

#define PLUGIN_KI_SERVER_REQUEST     20
#define PLUGIN_KI_SERVER_RESPONSE    21
#define PLUGIN_KI_USER_REQUEST       22
#define PLUGIN_KI_USER_RESPONSE      23

If this protocol is extended to be able to assist with further auth methods, their message type
codes will also begin from 20, overlapping the codes for keyboard-interactive.

H.6.1 PLUGIN_INIT

Direction: client to plugin

When: the first message sent at connection startup

What happens next: the plugin will send PLUGIN_INIT_RESPONSE or
PLUGIN_INIT_FAILURE

Message contents after the type code:

• uint32: the highest version number of this protocol that the client knows how to speak.

• string: the hostname of the server. This will be thelogical hostname, in cases where it
differs from the physical destination of the network connection. Whatever name would be
used by the SSH client to cache the server's host key, that's the same name passed in this
message.

• uint32: the port number on the server. (Together with the host name, this forms a primary
key identifying a particular server. Port numbers may be vital because a single host can
run two unrelated SSH servers with completely different authentication requirements, e.g.
system sshd on port 22 and Gerrit on port 29418.)

• string: the username that the client will use to log in, if the plugin chooses not to override
it. An empty string means that the client has no opinion about this (and might, for example,
prompt the user).

H.6.2 PLUGIN_INIT_RESPONSE

Direction: plugin to client

When: response toPLUGIN_INIT

What happens next: the client will sendPLUGIN_PROTOCOL, or perhaps terminate the
session (if no auth method is ever negotiated that the plugin can help with)

Message contents after the type code:

• uint32: the version number of this protocol that the connection will use. Must be no greater
than the max version number sent by the client inPLUGIN_INIT .
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• string: the username that the plugin suggests the client use. An empty string means that
the plugin has no opinion and the client should stick with the username it already had (or
prompt the user, if it had none).

H.6.3 PLUGIN_INIT_FAILURE

Direction: plugin to client

When: response toPLUGIN_INIT

What happens next: the session is over

Message contents after the type code:

• string: an error message to present to the user indicating why the plugin was unable to start
up.

H.6.4 PLUGIN_PROTOCOL

Direction: client to plugin

When: sent afterPLUGIN_INIT_RESPONSE, or after a previous auth phase terminates with
PLUGIN_AUTH_SUCCESSor PLUGIN_AUTH_FAILURE

What happens next: the plugin will send PLUGIN_PROTOCOL_ACCEPTor
PLUGIN_PROTOCOL_REJECT

Message contents after the type code:

• string: the SSH protocol id of the auth method the client intends to attempt. Currently the
only method specified for use in this protocol is ‘keyboard-interactive ’.

H.6.5 PLUGIN_PROTOCOL_REJECT

Direction: plugin to client

When: sent afterPLUGIN_PROTOCOL

What happens next: the client will either send anotherPLUGIN_PROTOCOLor terminate the
session

Message contents after the type code:

• string: an error message to present to the user, explaining why the plugin cannot help with
this authentication protocol.

An example might be ‘unable to open <config file>: <OS error message>’, if the plugin
depends on some configuration that the user has not set up.

If the plugin does not support this this particular authentication protocol at all, this string
should be left blank, so that no message will be presented to the user at all.

H.6.6 PLUGIN_PROTOCOL_ACCEPT

Direction: plugin to client
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When: sent afterPLUGIN_PROTOCOL

What happens next: depends on the auth protocol agreed on. For keyboard-interactive,
the client will sendPLUGIN_KI_SERVER_REQUESTor PLUGIN_AUTH_SUCCESSor
PLUGIN_AUTH_FAILURE. No other method is specified.

Message contents after the type code: none.

H.6.7 PLUGIN_KI_SERVER_REQUEST

Direction: client to plugin

When: sent after PLUGIN_PROTOCOL, or after a previous
PLUGIN_KI_SERVER_RESPONSE, when the SSH server has sent
SSH_MSG_USERAUTH_INFO_REQUEST

What happens next: the plugin will send eitherPLUGIN_KI_USER_REQUESTor
PLUGIN_KI_SERVER_RESPONSE

Message contents after the type code: the exact contents of the
SSH_MSG_USERAUTH_INFO_REQUESTjust sent by the server. See [RFC4256] section 3.2
for details. The summary:

• string: name of this prompt collection (e.g. to use as a dialog-box title)

• string: instructions to be displayed before this prompt collection

• string: language tag (deprecated)

• uint32: number of prompts in this collection

• That many copies of:

• string: prompt (in UTF-8)

• boolean: whether the response to this prompt is safe to echo to the screen

H.6.8 PLUGIN_KI_SERVER_RESPONSE

Direction: plugin to client

When: response toPLUGIN_KI_SERVER_REQUEST, perhaps after one or more intervening
pairs ofPLUGIN_KI_USER_REQUESTandPLUGIN_KI_USER_RESPONSE

What happens next: the client will send a furtherPLUGIN_KI_SERVER_REQUEST, or
PLUGIN_AUTH_SUCCESSor PLUGIN_AUTH_FAILURE

Message contents after the type code: the exact contents of the
SSH_MSG_USERAUTH_INFO_RESPONSEthat the client should send back to the server. See
[RFC4256] section 3.4 for details. The summary:

• uint32: number of responses (must match the ‘number of prompts’ field from the
corresponding server request)

• That many copies of:

• string: response to thenth prompt (in UTF-8)
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H.6.9 PLUGIN_KI_USER_REQUEST

Direction: plugin to client

When: response toPLUGIN_KI_SERVER_REQUEST, if the plugin cannot answer the server's
auth prompts without presenting prompts of its own to the user

What happens next: the client will sendPLUGIN_KI_USER_RESPONSE

Message contents after the type code: exactly the same as in
PLUGIN_KI_SERVER_REQUEST(see section H.6.7).

H.6.10 PLUGIN_KI_USER_RESPONSE

Direction: client to plugin

When: response toPLUGIN_KI_USER_REQUEST

What happens next: the plugin will sendPLUGIN_KI_SERVER_RESPONSE, or another
PLUGIN_KI_USER_REQUEST

Message contents after the type code: exactly the same as in
PLUGIN_KI_SERVER_RESPONSE(see section H.6.8).

H.6.11 PLUGIN_AUTH_SUCCESS

Direction: client to plugin

When: sent after PLUGIN_KI_SERVER_RESPONSE, or (in unusual cases) after
PLUGIN_PROTOCOL_ACCEPT

What happens next: the client will either send anotherPLUGIN_PROTOCOLor terminate the
session

Message contents after the type code: none

H.6.12 PLUGIN_AUTH_FAILURE

Direction: client to plugin

When: sent after PLUGIN_KI_SERVER_RESPONSE, or (in unusual cases) after
PLUGIN_PROTOCOL_ACCEPT

What happens next: the client will either send anotherPLUGIN_PROTOCOLor terminate the
session

Message contents after the type code: none

H.7 References
[RFC4251] RFC 4251, ‘The Secure Shell (SSH) Protocol Architecture’.

[RFC4252] RFC 4252, ‘The Secure Shell (SSH) Authentication Protocol’.

[RFC4256] RFC 4256, ‘Generic Message Exchange Authentication for the Secure Shell
Protocol (SSH)’ (better known by its wire id ‘keyboard-interactive’).
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-batch PSCP command-line option

110
-batch PSFTP command-line option

114
batch scripts in PSFTP 113
baud rate, of terminal 72
-bc PSFTP command-line option 113
beep, terminal 55
beep, with PC speaker 55
bell, disabling 55, 56
bell overload mode 55
bell, terminal 55
bell, visual 55
-be PSFTP command-line option 114
bidirectional text 58
bind address 34, 38, 94
BitchX 58
8-bit colour 68
32-bit Windows 163
64-bit Windows 163, 169
black, bold 68
blinking cursor 60
blinking text 50
Blowfish 86, 148
bold black 68
bold text 68, 69
box-drawing characters 32, 63
-b PSFTP command-line option 113
Break, serial special command 30
Break, SSH special command 29
Break, Telnet special command 30
bright black 68
BSD 102
bug reporting 179
bugs, in SSH servers 95
bulletin board system 22
CA (certification authority)

41, 43, 83, 89, 134, 148
cache, of SSH host keys

25, 29, 42, 71, 81, 83
Caps Lock 63

Carriage Return 49
cascading credentials 80
cat 167
-C command-line option 41
-cert 41
certificates, SSH

41, 43, 83, 89, 134, 148
ChaCha20-Poly1305 85
challenge/response authentication 88
‘Change Settings’ 31
changing permissions on files 118
changing user names 26, 88
CHAP 75
character classes 67
characters, accented 32, 54
character set 32, 58, 62
characters, line-drawing 32, 63
character width 62
Chinese 62
choosing a protocol 23, 37
cipher algorithm 85
Cisco 38
CJK 62
CJK ambiguous characters 62
clean up after PuTTY 170
-cleanup command-line option 36
clear screen 50
‘Clear Scrollback’ 31
client 22
clipboard 27, 29, 31
CLIPBOARDselection 65
clipboards, multiple 65
Close button 26, 61
closing window 46, 61
code page 62
colour 67, 164
colour, background, default 68, 69
colour, 8-bit 68
colour, foreground, default 68, 69
256-colour mode 68
colour, of cursor 68, 69
colours, ANSI 67, 69
colours, system 68
columns, in terminal window 59
COM1 101
command-line arguments 36, 142
command-line interface 22
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command line, loading saved sessions from
37

-1 command-line option 41
-2 command-line option 41
Command Prompt 22, 36, 106, 122
command, proxy 43, 74, 76
commands on the server 26, 38, 77, 161
commands, reading from a file 38
comment 114
Compose key 54
compression 41, 77
confidentiality 81
configuration 42
configuration options 44
connection, network 32, 69, 94
connections, half-open 70
connections, idle 69, 165
connections, interactive 70, 91, 122
connectivity, breaks in 69, 166
CONNECTproxy (HTTP) 73
console window 22, 36, 106, 122
context menu 27, 28, 64
Control-? 52
Control-H 52
control sequences
31, 48, 49, 50, 56, 61, 63, 65, 67, 68, 72, 124,

160
cookie, magic 93
coordinates, cursor 49
Copy All to Clipboard 31
copy and paste 27, 56, 63, 64, 65, 162
copyright 192
corruption, of display 58
CP437 62
CP866 62
-c Pageant command-line option 142
CRC 151
CR (Carriage Return) 49
creating directories 119
creating key pairs 131
credential delegation, GSSAPI 90
credentials, cascading 80
CryptoCard authentication 88
Ctrl-? 52
Ctrl-Break 29
Ctrl-C 27, 28, 65
Ctrl-H 52

Ctrl-Ins 27, 66
Ctrl-PgDn 28
Ctrl-PgUp 28
Ctrl-Shift-C 66
Ctrl-Shift-PgDn 28
Ctrl-Shift-PgUp 28
Ctrl-Shift-V 66
Ctrl-V 65
Ctrl, with right mouse button 27
current working directory 116
cursor 60
cursor, blinking 60
cursor colour 68, 69
cursor coordinates 49
cursor keys, ‘Application’ mode 53, 56
cut and paste 27, 56, 63, 64, 65, 162
CVS 128
CVS_RSHenvironment variable 128
Cyrillic 63
-D command-line option 38
debugging Internet protocols 34
DEC Compose key 54
DEC Origin Mode 49
DECterm 160
Default Beep sound, Windows 55
Default Settings 36, 45
delays, in SSH-2 sessions 169
delegation, of GSSAPI credentials 90
deleting directories 119
deleting files 119
DES 86, 148
destructive backspace 58
development snapshots 180
diagnostic, proxy 76
dialog box 24
DiceWare 134
differences between SSH, Telnet, Rlogin,
and SUPDUP 23
different user names 26, 88
Diffie-Hellman group exchange 79
Diffie-Hellman key exchange 79
Diffie-Hellman key exchange, with elliptic
curves 79
‘digest’ authentication (HTTP) 75
digital signature 98, 130
Digital Signature Standard 82, 131, 170
directories, creating 119
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directories, removing 119
display corruption 58
DISPLAY environment variable 32
DLL 91, 164
DNS 75
DNS name 24, 44, 61, 70, 108
DNS resolution 75
DNS, with proxy 74, 75
Domain Name System 75
double-click 27, 67
double-width character 62
downloading files 107, 116
Dragon NaturallySpeaking 61
DSA 82, 131, 170
DSA authentication

41, 89, 99, 111, 120, 125, 130
DSS 131
‘Duplicate Session’ 30, 169
dynamic port forwarding 33, 38, 94
East Asian Ambiguous characters 62
‘ECDH’ (elliptic-curve Diffie-Hellman)

79
ECDSA 130, 131
echo, local 50, 51, 155
echo, remote 50
Ed25519 82, 132
Ed448 82, 132
EdDSA 82, 131
Edwards-curve DSA 82, 131
elliptic curve 82, 131
elliptic-curve Diffie-Hellman key exchange

79
elliptic-curve DSA 130, 131
elliptic curves, NIST-standardised

82, 132, 141, 189
emulation, terminal

31, 48, 50, 52, 56, 72
encryption 99, 130, 134
encryption algorithm 85
End key 52
End Of File, Telnet special command

30
End Of Record, Telnet special command

30
enquiry character 50
environment variables 72, 102
Erase Character, Telnet special command

30, 103

Erase Line, Telnet special command 30
erase screen 50
ERASE, special character 92
ERRORLEVEL 110
error messages 147
escape sequences
31, 48, 49, 50, 56, 61, 63, 65, 67, 68, 72, 124
Event Log 28, 46
execute permission 118
exit value 110
expiry, of passwords 88
exporting private keys 137
extending a selection 28, 64
FAQ 154
features, supported 154
feedback 179
feep 55
filenames containing spaces 114, 163
files, changing permissions on 118
files, deleting 119
files, listing 109, 118
files, receiving 107, 116
files, renaming and moving 120
files, resuming transfer of 117
files, sending 107, 117
files, transferring 106, 112
finger 34
fingerprint, MD5, of SSH host key

25, 83
fingerprint, of PGP key 42
fingerprint, of SSH authentication key

133, 141
fingerprint, of SSH host key 25
fingerprint, SHA-256, of SSH host key

25, 83
firewalls 69, 81, 102, 152, 165
flashing cursor 60
flashing text 50
flow-control window 97
font 60, 63, 67, 68
font size 59, 60
foreground colour, default 68, 69
forwarding, of X11 32, 39, 92
forwarding ports in SSH

32, 38, 73, 77, 94
forwarding ports in SSH, changing mid-
session 94
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forwarding, SSH agent 39, 88, 144
Frequently Asked Questions 154
ftp 112
full-screen mode 31, 59, 62
function keys 52, 167
generating key pairs 131
glob (wildcard) 107, 108, 110, 115, 117
Go Ahead, Telnet special command 30
GPG signatures, of PuTTY binaries

205
graphical applications 32, 92
group exchange, Diffie-Hellman 79
GSSAPI 72, 90
GSSAPI credential delegation 90
Gtk 158
half-open connections 70
Hebrew 58
history 28
HMAC 98
home directory 108
Home key 52
-host-ca 43
-hostkey 42
host key fingerprint (SSH) 25
host key management

25, 29, 42, 71, 81, 83
host keys, manually configuring 42, 82
host keys, trusting 25
host keys, upgrading 29
host key type 82
host key, verifying 24, 156
host name 24, 44, 61, 70, 108
host name, logical 42, 71
host name resolution 75
host name resolution, with proxy 74, 75
HTTP 34
HTTP Basic authentication 75
HTTP Digest authentication 75
HTTP proxy 73
-i command-line option 41
icon, PuTTY's 26, 160
icon title 61
idle connections 69, 165
‘ignore’ messages, in SSH 29, 96, 99
IGNORE message, SSH special command

29
importing private keys 137

inactive window 46
indenting 27
integrity 81
interactive connections 70, 91, 122
intermittent connectivity 69, 166
internal error 149
internal fault 149
Internet protocols, debugging 34
Internet Protocol version 41, 70, 95
Interrupt Process, Telnet special command

30, 103
IP address 34, 44, 70
IP address, loopback 34, 74
IP masquerading 152, 165
IPv4 41, 70, 95
IPv6 41, 70, 95
IPv6 address 94
ISO-8859 62
ISO-10646 (Unicode) 58, 62, 63
IUTF8 terminal mode 92
Japanese 62
jump host 73
keepalives, application 69, 81, 96, 99
keepalives, TCP 70
Kerberos 90
kex 79
keyboard 52, 72, 167
keyboard-interactive authentication 88
key exchange 79
key exchange algorithm 79
key exchange, Diffie-Hellman 79
key exchange, elliptic-curve Diffie-
Hellman 79
key exchange, forcing repeat 29
key exchange, repeat 29, 80, 96, 169
--keylist Pageant command-line
option 144
keypad, ‘Application’ mode 53, 56
keypad, NetHack mode 54
keypad, numeric 52
key pair 130
key pairs, generating 131
known_hosts 156
Korean 62
last selected text 66
-L command-line option 38
-l command-line option 37
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left mouse button 27, 64
LF (Line Feed) 49
licence 192
line-drawing characters 32, 63
line editing, local 51
Line Feed 49
lines, selecting 27
line wrapping, automatic 48, 165
links (web browser) 56
Linux 52, 72, 91, 95, 119, 152, 167
Linux, Red Hat 168
Linux version of PuTTY tools 1, 157
Linux virtual console 52
listen address 34, 38, 94
listing files 109, 118
-load command-line option 37
loading private keys 137
loading saved sessions from command line

37
loading settings 45
loading settings from a file 104
local echo 50, 51, 155
localhost 33, 74, 95, 168
local line editing 51
local proxy 43, 74, 76
local-to-remote port forwarding

33, 38, 94
local user name, in Rlogin 103
local user name, in Windows 103
local Windows command 120
locking up, SSH-2 sessions 169
-logappend 43
Log, Event 28, 46
log file 31, 42, 46
log file, flushing 47
log file, header 47
logging in 25
logging out 26
logging, proxy 76
-loghost 42
logical host name 42, 71
logical palettes 68
login name 25, 37, 108
login name, for auto-login 71
login name, for proxy 75
login name, local, in Rlogin 103
login name, local, in Windows 103

login names, different 26, 88
login, passwordless

23, 90, 103, 134, 140
login scripts 149, 164, 165
logo, PuTTY's 26, 160
-logoverwrite 43
loopback IP address 34, 74
low-numbered port 33, 94, 103
-ls PSCP command-line option 109
MAC (message authentication code)

85, 98, 151
Mac OS 158
magic cookie 93
mailing list 179
man pages for PuTTY tools 1
manually configuring host keys 42, 82
maximise window 59, 162
maximum packet size 97
mc 56
-m command-line option 38
MD5 fingerprint, of SSH host key

25, 83
menu, context 27, 28, 64
menu, system 28, 31, 61, 62
message authentication code (MAC)

85, 98, 151
Microsoft Store 171
middle mouse button 28, 64, 65
Midnight Commander 56
minimise window 61
mistyping a password 26
MIT-MAGIC-COOKIE-1 93
modes of files, changing 118
mouse 27
mouse pointer 28, 60
mouse reporting 28, 56, 65
mouse, three-button 27, 64
moving files 120
MS-DOS Prompt 22, 36, 106, 122
MUDs 22, 24, 51
multi-user systems 36, 170
Nagle's algorithm 70
name resolution 75
name resolution, with proxy 74, 75
NAT routers 152, 165
NaturallySpeaking 61
-nc 40
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-N command-line option 40
negotiation, of Telnet options 102
NetHack keypad mode 54
Network Address Translation 152, 165
network connection 32, 69, 94
network protocols 22
NEW_ENVIRON 102
new line 49, 103
new line, in Telnet 103
‘New Session’ 30, 169
new version, verifying 42, 205
NIST-standardised elliptic curves

82, 132, 141, 189
NNTP 34
-noagent 39
-no-antispoof 127
non-destructive backspace 58
No Operation, Telnet special command

30
No-op, in SSH 29
-no-sanitise-stderr 110, 114, 126
-no-sanitise-stdout 126
notification area, Windows (aka system
tray) 43, 140
-no-trivial-auth 41
NTRU Prime 79
numeric keypad 52
numeric keypad, ‘Application’ mode

53, 56
Num Lock 53, 54
OLD_ENVIRON 102
one-time passwords 88
OpenSSH
34, 88, 94, 95, 98, 99, 136, 139, 144, 149,

169, 177
OpenSSH certificates

41, 43, 83, 89, 134, 148
--openssh-config Pageant
command-line option 143
OpenSSH, on Windows 142
OpenSSH private key file format 137
option negotiation, Telnet 102
options, command-line 36, 142
out of memory 149, 164, 165
overriding host keys 42, 82
packet log, SSH 46, 48
Pageant 39, 88, 89, 100, 130, 140

palettes, logical 68
passive Telnet negotiation 102
passphrase 130, 134, 140
passphrase hashing, for private key files

136
passthrough printing 51
password 25, 39
password camouflage 99
password expiry 88
password, for proxy 75
password hashing, for private key files

136
passwordless login

23, 90, 103, 134, 140
password, mistyping 26
password, one-time 88
password, plain text 75
password prompt 167
password, storing 155
paste, copy and 27, 56, 63, 64, 65, 162
patch 181
PATHenvironment variable

106, 112, 122
-P command-line option 38
PC speaker 55
Pentium 4 157
permissions on files, changing 118
-pgpfp command-line option 42, 205
PGP key fingerprint 42
PGP signatures, of PuTTY binaries 205
plain text password 75
Plink 122
PLINK_PROTOCOLenvironment variable

124
plugin 89
POP-3 32
port forwarding in SSH

32, 38, 73, 77, 94
port forwarding in SSH, changing mid-
session 94
port number 33, 38, 44, 94
port, privileged 33, 94, 103
POSIX 92, 115
PPKfile 41, 89, 135, 137, 140
-p PSCP command-line option 109
preserve file attributes 109
PRIMARYselection 65
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prime generation method 132
primes, probable 132
primes, proven 132
printing, remote-controlled 51
private key 41, 89, 130, 140
private key file, OpenSSH 137
private key file, PuTTY

41, 89, 135, 137, 140
private key file,ssh.com 137
private keys, generating 131
privileged port 33, 94, 103
probable primes 132
process ACL (Windows) 43, 144
prompt 26
protocol 24
protocols, debugging 34
protocols, differences between 23
protocol selection 37
protocol version, SSH 41, 77
proven primes 132
proxy authentication 75
-proxycmd 43
proxy command 43, 74, 76
proxy DNS 74, 75
proxy, HTTP 73
proxy logging 76
proxy password 75
proxy server 70, 73
proxy, SOCKS 73
proxy, Telnet 73, 76, 102
proxy user name 75
PSCP 106
pseudo-terminal allocation 39, 91
PSFTP 112
‘psusan ’ program 100
pterm 1, 158
pty allocation 39, 91
public key 130
public-key algorithm 130
public key authentication

41, 89, 99, 111, 120, 125, 130
public key file, SSH-2 135
public key fingerprint (SSH) 133, 141
public keys, generating 131
punctuation 67
PuTTY Event Log 28, 46
PuTTYgen 131

PuTTY icon 26, 160
putty.rnd (random seed file)

36, 160
putty @sessionname 37
PuTTYtel 75
PuTTY terminal window

26, 27, 28, 46, 59, 60, 69
-pw command-line option 39
-pwfile command-line option 39
-q PSCP command-line option 109
quantum attacks, resistance to 79
QUIT, special character 92
quoting, in PSFTP 114
random seed file 36
-raw command-line option 36, 37
raw protocol 24
‘Raw’ protocol 35
raw TCP connections 34
RC4 85, 148
-R command-line option 38
reading commands from a file 38
read permission 118
receiving files 107, 116
rectangular selection 27, 65
recursive 109, 116, 117
Red Hat Linux 168
Re-encrypt 145
re-encryptable 145
registry entries, removing 36
Registry (Windows) 25, 45, 104, 160
remote commands 26, 38, 77, 161
remote-controlled printing 51
remote echo 50
remote network connection 40
remote shell 77
remote shell, suppressing 40
remote-to-local port forwarding

33, 38, 94
removing directories 119
removing files 119
removing registry entries 36
renaming files 120
repeat key exchange 29, 80, 96, 169
Repeat key exchange, SSH special
command 29
‘Reset Terminal’ 31
resizing, terminal 57, 59
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‘Restart Session’ 30
-restrict-acl 43, 144
-restrict-putty-acl 43
resuming file transfers 117
return value 110
RFC 102
RGB values 69
.rhosts file 103
‘rhosts’ file 103
Rich Text Format 67
right mouse button 27, 64
right mouse button menu 27, 28, 64
right mouse button, with Ctrl 27
right-to-left text 58
Rijndael 85
Rlogin 24, 35, 103
-rlogin command-line option 36, 37
Rlogin, differences from other protocols

23
routers 69
routers, NAT 152, 165
rows, in terminal window 59
-r PSCP command-line option 109
RSA 82, 98, 100, 130, 131
RSA authentication

41, 89, 99, 111, 120, 125, 130
RSA-based key exchange 80
RTF 67
Russian 63
rxvt 52
-sanitise-stderr 110, 114, 126
-sanitise-stdout 126
saved sessions, loading from command line

37
‘Saved Sessions’ submenu 30
saving private keys 137
saving settings 45
saving settings in a file 104
SCO 53
SCP protocol 108, 110
-scp PSCP command-line option 110
screen, clearing 50
scripts 128
scrollback 28, 59
scrollback clearing 58
scrollback, clearing 31
scrollbar 28, 59

scrolling region 49
SECONDARYselection 66
secret, shared 79
secure shell 23
security hazard 57, 75, 108, 146
security token 88
selecting a protocol 23, 37
selecting text 27, 64
selecting whole lines 27
selecting whole words 27, 67
selection, adjusting 28, 64
selection,CLIPBOARD 65
selection,PRIMARY 65
selection, rectangular 27, 65
selection,SECONDARY 66
selections, multiple 65
sending files 107, 117
-sercfg command-line option 42
Serial 101
-serial command-line option 36, 37
serial line 44, 101
serial port 101
server 22
server, commands on 26, 38, 77, 161
server, HTTP 73
server name 24, 44, 61, 70, 108
server name resolution 75
server name resolution, with proxy

74, 75
server, proxy 70, 73
server, SOCKS 73
service names 94
session ID 99
session log 31
-sessionlog 42
@sessionname command-line argument

37
sessions, loading and storing 45
session, starting 24
set-group-ID bit 119
settings, changing 31
settings, default 36, 45
settings, loading and storing 45
set-user-ID bit 119
SFTP 108, 110, 112
-sftp PSCP command-line option

110
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SHA-256 fingerprint, of SSH host key
25, 83

shaping, of Arabic text 58
shared secret 79
-shareexists Plink command-line
option 126
-share-plink 126
shell account 22
shell, remote 77
shell, remote, suppressing 40
Shift-Backspace 52
shifted arrow keys 53
Shift-Ins 27, 66
Shift-PgDn 28
Shift-PgUp 28
shortcut, Windows 36, 37, 142, 162
side-channel attacks 132, 136
Signal, SSH special command 29
signature 98, 130
signatures, of PuTTY binaries 205
single-DES 86, 148
single sign-on 72, 90
single-width character 62
size, of font 59, 60
size, of window 59
S/Key 88
SMB 168
SMTP 34
SOCKS port forwarding 33, 38, 94
SOCKS proxy 73
SO_KEEPALIVE 70
sound file 55
spaces in filenames 114, 163
special character 92
special commands 29
special commands, in SSH 29
special commands, in Telnet 30, 103
speed, terminal 72
-s Plink command-line option 126
spoofing 25, 103, 130
SSH 24, 44, 77
SSH-1 41, 77
SSH-2 41, 73, 77, 147, 148
ssh-add 145
SSH agent forwarding 39, 88, 144
SSH certificates

41, 43, 83, 89, 134, 148

ssh.com 99, 135, 139, 144
-ssh command-line option 36, 37
ssh.com private key file format 137
-ssh-connection command-line
option 36, 37
ssh-connection protocol, bare 100
SSH, differences from other protocols

23
.ssh directory 139
.ssh2 directory 139
SSH file transfer protocol 108, 110, 112
SSH host key fingerprint 25
SSH ‘ignore’ messages 29, 96, 99
SSH key exchange, forcing repeat 29
ssh-keygen 141
-sshlog 42
SSH packet log 46, 48
SSH port forwarding 32, 38, 73, 77, 94
SSH port forwarding, changing mid-session

94
SSH protocol version 41, 77
SSH-2 public key file format 135
SSH public key fingerprint 133, 141
-sshrawlog 42
SSH server bugs 95
SSH special commands 29
SSH subsystem 74, 126
SSH tunnelling 32, 38, 73, 77, 94
SSH tunnelling, changing mid-session

94
SSH X11 forwarding 32, 39, 92
SSPI 91
stair-stepping 49
standard error, proxy 76
starting a session 24
Start Menu 106
startup scripts 149, 164, 165
statistics 109
sticky bit 119
storing passwords 155
storing settings 45
storing settings in a file 104
Streamlined NTRU Prime 79
‘strong’ primes 133
stty 52, 92
subsystem, SSH 74, 126
Sun SSH 149
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SUPDUP 24, 35, 104
-supdup command-line option 36, 37
SUPDUP, differences from other protocols

23
supported features 154
support requests 183
Suspend Process, Telnet special command

30, 103
swap file 146
switches, command-line 36, 142
symmetric-key algorithm 85
Synch, Telnet special command 30
system colours 68
SYSTEM32directory, on Windows 169
system menu 28, 31, 61, 62
system tray, Windows 43, 140
talker systems 22, 51
taskbar 55
taskbar notification area, Windows (aka
system tray) 43, 140
-T command-line option 39
-t command-line option 39
TCP connections, raw 34
TCP keepalives 70
TCP_NODELAY 70
TCP proxy 73, 76, 102
Telnet 24, 35, 102
-telnet command-line option 36, 37
Telnet, differences from other protocols

23
Telnet New Line 103
Telnet option negotiation 102
Telnet proxy 73, 76, 102
Telnet special commands 30, 103
Telnet URLs 36
termcap 52, 72
TERMenvironment variable 68
terminal bell 55
terminal bell, disabling 55, 56
terminal bell overload mode 55
terminal control sequences
31, 48, 49, 50, 56, 61, 63, 65, 67, 68, 72, 124
terminal emulation

31, 48, 50, 52, 56, 72
terminal modes 91
terminal, resetting 31
terminal resizing 57, 59

terminal speed 72
terminal type 160
terminal window

26, 27, 28, 46, 59, 60, 69
terminal window, inactive 46
terminfo 52, 72
three-button mouse 27, 64
timeout, of connections 69, 165
timestamp 109
TIS authentication 88
token, security 88
transferring files 106, 112
triple-click 27
triple-DES 86
trn 56
trusting host keys 25
tunnelling using SSH 32, 38, 73, 77, 94
tunnelling using SSH, changing mid-
session 94
typeface 60, 63, 67, 68
UDP 94
Unicode 58, 62, 63
uninstalling 170
Unix 52, 72, 91, 119, 152, 167
Unix version of PuTTY tools 1, 157
-unsafe PSCP command-line option

108
upgraded version, verifying 42, 205
uploading files 107, 117
Uppity 156
URLs, Telnet 36
US-ASCII 63, 157
user name 25, 37, 108
user name, for auto-login 71
user name, for proxy 75
user name, local, in Rlogin 103
user name, local, in Windows 103
user names, different 26, 88
UTF-8 62, 63, 92, 168
variables, environment 72, 102
-v command-line option 37
VERASE, special character 92
verbose mode 37
verifying new versions of PuTTY

42, 205
verifying the host key 24, 156
version, of Internet Protocol 41, 70, 95
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version, of PuTTY 181
version, of SSH protocol 41, 77
visual bell 55
VQUIT, special character 92
VT100+ 53
VT400 53
vt220 72
WAVfile 55
web browser 33, 36
web server 22
web site 184
white space 67
wildcards 107, 108, 110, 115, 117
WinCVS 128
window border 60
window caption 55, 61
window, closing 46, 61
window, inactive 46
window, maximising 59, 162
window menu 28, 31, 61, 62
window, minimising 61
window resizing 57, 59
Windows 3.1 158
Windows, 32-bit 163
Windows, 64-bit 163, 169
Windows clipboard 27
Windows command 120
Windows Default Beep sound 55
Windows file sharing 168
window size 59
Windows OpenSSH 142
Windows process ACL 43, 144
Windows Registry 25, 45, 104, 160
Windows shortcut 36, 37, 142, 162
Windows Store 171
Windows Terminal Services 168
Windows XP 168, 169
window, terminal

26, 27, 28, 46, 59, 60, 69
window title 57, 61, 166
Win32s 158
Win125x 62
words, selecting 27, 67
working directory 116
wrapping, automatic 48, 165
wrapping, terminal 62
write permission 118

X11 authentication 93
x86 (32-bit processor architecture) 163
-X command-line option 39
-x command-line option 39
‘X display location’ 32
XDM-AUTHORIZATION-1 93
X11 forwarding 32, 39, 92
X server 32
xterm 27, 52, 53, 64, 72
xterm mouse reporting 28, 56, 65

232


	PuTTY User Manual
	Contents
	Chapter 1: Introduction to PuTTY
	1.1 What are SSH, Telnet, Rlogin, and SUPDUP?
	1.2 How do SSH, Telnet, Rlogin, and SUPDUP differ?

	Chapter 2: Getting started with PuTTY
	2.1 Starting a session
	2.2 Verifying the host key (SSH only)
	2.3 Logging in
	2.4 After logging in
	2.5 Logging out

	Chapter 3: Using PuTTY
	3.1 During your session
	3.1.1 Copying and pasting text
	3.1.2 Scrolling the screen back
	3.1.3 The System menu
	3.1.3.1 The PuTTY Event Log
	3.1.3.2 Special commands
	3.1.3.3 Starting new sessions
	3.1.3.4 Changing your session settings
	3.1.3.5 Copy All to Clipboard
	3.1.3.6 Clearing and resetting the terminal
	3.1.3.7 Full screen mode


	3.2 Creating a log file of your session
	3.3 Altering your character set configuration
	3.4 Using X11 forwarding in SSH
	3.5 Using port forwarding in SSH
	3.6 Connecting to a local serial line
	3.7 Making raw TCP connections
	3.8 Connecting using the Telnet protocol
	3.9 Connecting using the Rlogin protocol
	3.10 Connecting using the SUPDUP protocol
	3.11 The PuTTY command line
	3.11.1 Starting a session from the command line
	3.11.2 '-cleanup'
	3.11.3 Standard command-line options
	3.11.3.1 '-load': load a saved session
	3.11.3.2 Selecting a protocol: '-ssh', '-ssh-connection', '-telnet', '-rlogin', '-supdup', '-raw', '-serial'
	3.11.3.3 '-v': increase verbosity
	3.11.3.4 '-l': specify a login name
	3.11.3.5 '-L', '-R' and '-D': set up port forwardings
	3.11.3.6 '-m': read a remote command or script from a file
	3.11.3.7 '-P': specify a port number
	3.11.3.8 '-pwfile' and '-pw': specify a password
	3.11.3.9 '-agent' and '-noagent': control use of Pageant for authentication
	3.11.3.10 '-A' and '-a': control agent forwarding
	3.11.3.11 '-X' and '-x': control X11 forwarding
	3.11.3.12 '-t' and '-T': control pseudo-terminal allocation
	3.11.3.13 '-N': suppress starting a shell or command
	3.11.3.14 '-nc': make a remote network connection in place of a remote shell or command
	3.11.3.15 '-C': enable compression
	3.11.3.16 '-1' and '-2': specify an SSH protocol version
	3.11.3.17 '-4' and '-6': specify an Internet protocol version
	3.11.3.18 '-i': specify an SSH private key
	3.11.3.19 '-cert': specify an SSH certificate
	3.11.3.20 '-no-trivial-auth': disconnect if SSH authentication succeeds trivially
	3.11.3.21 '-loghost': specify a logical host name
	3.11.3.22 '-hostkey': manually specify an expected host key
	3.11.3.23 '-pgpfp': display PGP key fingerprints
	3.11.3.24 '-sercfg': specify serial port configuration
	3.11.3.25 '-sessionlog', '-sshlog', '-sshrawlog': enable session logging
	3.11.3.26 '-logoverwrite', '-logappend': control behaviour with existing log file
	3.11.3.27 '-proxycmd': specify a local proxy command
	3.11.3.28 '-restrict-acl': restrict the Windows process ACL
	3.11.3.29 '-host-ca': launch the host CA configuration



	Chapter 4: Configuring PuTTY
	4.1 The Session panel
	4.1.1 The host name section
	4.1.2 Loading and storing saved sessions
	4.1.3 'Close window on exit'

	4.2 The Logging panel
	4.2.1 'Log file name'
	4.2.2 'What to do if the log file already exists'
	4.2.3 'Flush log file frequently'
	4.2.4 'Include header'
	4.2.5 Options specific to SSH packet logging
	4.2.5.1 'Omit known password fields'
	4.2.5.2 'Omit session data'


	4.3 The Terminal panel
	4.3.1 'Auto wrap mode initially on'
	4.3.2 'DEC Origin Mode initially on'
	4.3.3 'Implicit CR in every LF'
	4.3.4 'Implicit LF in every CR'
	4.3.5 'Use background colour to erase screen'
	4.3.6 'Enable blinking text'
	4.3.7 'Answerback to ^E'
	4.3.8 'Local echo'
	4.3.9 'Local line editing'
	4.3.10 Remote-controlled printing

	4.4 The Keyboard panel
	4.4.1 Changing the action of the Backspace key
	4.4.2 Changing the action of the Home and End keys
	4.4.3 Changing the action of the function keys and keypad
	4.4.4 Changing the action of the shifted arrow keys
	4.4.5 Controlling Application Cursor Keys mode
	4.4.6 Controlling Application Keypad mode
	4.4.7 Using NetHack keypad mode
	4.4.8 Enabling a DEC-like Compose key
	4.4.9 'Control-Alt is different from AltGr'

	4.5 The Bell panel
	4.5.1 'Set the style of bell'
	4.5.2 'Taskbar/caption indication on bell'
	4.5.3 'Control the bell overload behaviour'

	4.6 The Features panel
	4.6.1 Disabling application keypad and cursor keys
	4.6.2 Disabling xterm-style mouse reporting
	4.6.3 Disabling remote terminal resizing
	4.6.4 Disabling switching to the alternate screen
	4.6.5 Disabling remote window title changing
	4.6.6 Response to remote window title querying
	4.6.7 Disabling remote scrollback clearing
	4.6.8 Disabling destructive backspace
	4.6.9 Disabling remote character set configuration
	4.6.10 Disabling Arabic text shaping
	4.6.11 Disabling bidirectional text display

	4.7 The Window panel
	4.7.1 Setting the size of the PuTTY window
	4.7.2 What to do when the window is resized
	4.7.3 Controlling scrollback
	4.7.4 'Push erased text into scrollback'

	4.8 The Appearance panel
	4.8.1 Controlling the appearance of the cursor
	4.8.2 Controlling the font used in the terminal window
	4.8.3 'Hide mouse pointer when typing in window'
	4.8.4 Controlling the window border

	4.9 The Behaviour panel
	4.9.1 Controlling the window title
	4.9.2 'Warn before closing window'
	4.9.3 'Window closes on ALT-F4'
	4.9.4 'System menu appears on ALT-Space'
	4.9.5 'System menu appears on Alt alone'
	4.9.6 'Ensure window is always on top'
	4.9.7 'Full screen on Alt-Enter'

	4.10 The Translation panel
	4.10.1 Controlling character set translation
	4.10.2 'Treat CJK ambiguous characters as wide'
	4.10.3 'Caps Lock acts as Cyrillic switch'
	4.10.4 Controlling display of line-drawing characters
	4.10.5 Controlling copy and paste of line drawing characters
	4.10.6 Combining VT100 line-drawing with UTF-8

	4.11 The Selection panel
	4.11.1 Changing the actions of the mouse buttons
	4.11.2 'Shift overrides application's use of mouse'
	4.11.3 Default selection mode
	4.11.4 Assigning copy and paste actions to clipboards
	4.11.4.1 'Auto-copy selected text'
	4.11.4.2 Choosing a clipboard for UI actions

	4.11.5 'Permit control characters in pasted text'

	4.12 The Copy panel
	4.12.1 Character classes
	4.12.2 Copying in Rich Text Format

	4.13 The Colours panel
	4.13.1 'Allow terminal to specify ANSI colours'
	4.13.2 'Allow terminal to use xterm 256-colour mode'
	4.13.3 'Allow terminal to use 24-bit colour'
	4.13.4 'Indicate bolded text by changing...'
	4.13.5 'Attempt to use logical palettes'
	4.13.6 'Use system colours'
	4.13.7 Adjusting the colours in the terminal window

	4.14 The Connection panel
	4.14.1 Using keepalives to prevent disconnection
	4.14.2 'Disable Nagle's algorithm'
	4.14.3 'Enable TCP keepalives'
	4.14.4 'Internet protocol version'
	4.14.5 'Logical name of remote host'

	4.15 The Data panel
	4.15.1 'Auto-login username'
	4.15.2 Use of system username
	4.15.3 'Terminal-type string'
	4.15.4 'Terminal speeds'
	4.15.5 Setting environment variables on the server

	4.16 The Proxy panel
	4.16.1 Setting the proxy type
	4.16.2 Excluding parts of the network from proxying
	4.16.3 Name resolution when using a proxy
	4.16.4 Username and password
	4.16.5 Specifying the Telnet, SSH, or Local proxy command
	4.16.6 Controlling proxy logging

	4.17 The SSH panel
	4.17.1 Executing a specific command on the server
	4.17.2 'Don't start a shell or command at all'
	4.17.3 'Enable compression'
	4.17.4 'SSH protocol version'
	4.17.5 Sharing an SSH connection between PuTTY tools

	4.18 The Kex panel
	4.18.1 Key exchange algorithm selection
	4.18.1.1 GSSAPI-based key exchange

	4.18.2 Repeat key exchange

	4.19 The Host Keys panel
	4.19.1 Host key type selection
	4.19.2 Preferring known host keys
	4.19.3 Manually configuring host keys
	4.19.4 Configuring PuTTY to accept host certificates
	4.19.4.1 Expressions you can enter in 'Valid hosts'
	4.19.4.2 RSA signature types in certificates


	4.20 The Cipher panel
	4.21 The Auth panel
	4.21.1 'Display pre-authentication banner'
	4.21.2 'Bypass authentication entirely'
	4.21.3 'Disconnect if authentication succeeds trivially'
	4.21.4 'Attempt authentication using Pageant'
	4.21.5 'Attempt TIS or CryptoCard authentication'
	4.21.6 'Attempt keyboard-interactive authentication'
	4.21.7 'Allow agent forwarding'
	4.21.8 'Allow attempted changes of username in SSH-2'

	4.22 The Credentials panel
	4.22.1 'Private key file for authentication'
	4.22.2 'Certificate to use with the private key'
	4.22.3 'Plugin to provide authentication responses'

	4.23 The GSSAPI panel
	4.23.1 'Allow GSSAPI credential delegation'
	4.23.2 Preference order for GSSAPI libraries

	4.24 The TTY panel
	4.24.1 'Don't allocate a pseudo-terminal'
	4.24.2 Sending terminal modes

	4.25 The X11 panel
	4.25.1 Remote X11 authentication
	4.25.2 X authority file for local display

	4.26 The Tunnels panel
	4.26.1 Controlling the visibility of forwarded ports
	4.26.2 Selecting Internet protocol version for forwarded ports

	4.27 The Bugs and More Bugs panels
	4.27.1 'Chokes on SSH-2 ignore messages'
	4.27.2 'Handles SSH-2 key re-exchange badly'
	4.27.3 'Chokes on PuTTY's SSH-2 'winadj' requests'
	4.27.4 'Replies to requests on closed channels'
	4.27.5 'Ignores SSH-2 maximum packet size'
	4.27.6 'Discards data sent before its greeting'
	4.27.7 'Chokes on PuTTY's full KEXINIT'
	4.27.8 'Requires padding on SSH-2 RSA signatures'
	4.27.9 'Only supports pre-RFC4419 SSH-2 DH GEX'
	4.27.10 'Miscomputes SSH-2 HMAC keys'
	4.27.11 'Misuses the session ID in SSH-2 PK auth'
	4.27.12 'Miscomputes SSH-2 encryption keys'
	4.27.13 'Chokes on SSH-1 ignore messages'
	4.27.14 'Refuses all SSH-1 password camouflage'
	4.27.15 'Chokes on SSH-1 RSA authentication'

	4.28 The 'Bare ssh-connection' protocol
	4.29 The Serial panel
	4.29.1 Selecting a serial line to connect to
	4.29.2 Selecting the speed of your serial line
	4.29.3 Selecting the number of data bits
	4.29.4 Selecting the number of stop bits
	4.29.5 Selecting the serial parity checking scheme
	4.29.6 Selecting the serial flow control scheme

	4.30 The Telnet panel
	4.30.1 'Handling of OLD_ENVIRON ambiguity'
	4.30.2 Passive and active Telnet negotiation modes
	4.30.3 'Keyboard sends Telnet special commands'
	4.30.4 'Return key sends Telnet New Line instead of ^M'

	4.31 The Rlogin panel
	4.31.1 'Local username'

	4.32 The SUPDUP panel
	4.32.1 'Location string'
	4.32.2 'Extended ASCII Character set'
	4.32.3 '**MORE** processing'
	4.32.4 'Terminal scrolling'

	4.33 Storing configuration in a file

	Chapter 5: Using PSCP to transfer files securely
	5.1 Starting PSCP
	5.2 PSCP Usage
	5.2.1 The basics
	5.2.1.1 'user'
	5.2.1.2 'host'
	5.2.1.3 'source'
	5.2.1.4 'target'

	5.2.2 Options
	5.2.2.1 '-ls' list remote files
	5.2.2.2 '-p' preserve file attributes
	5.2.2.3 '-q' quiet, don't show statistics
	5.2.2.4 '-r' copies directories recursively
	5.2.2.5 '-batch' avoid interactive prompts
	5.2.2.6 '-sftp', '-scp' force use of particular file transfer protocol
	5.2.2.7 '-no-sanitise-stderr': control error message sanitisation

	5.2.3 Return value
	5.2.4 Using public key authentication with PSCP


	Chapter 6: Using PSFTP to transfer files securely
	6.1 Starting PSFTP
	6.1.1 '-b': specify a file containing batch commands
	6.1.2 '-bc': display batch commands as they are run
	6.1.3 '-be': continue batch processing on errors
	6.1.4 '-batch': avoid interactive prompts
	6.1.4.1 '-no-sanitise-stderr': control error message sanitisation


	6.2 Running PSFTP
	6.2.1 General quoting rules for PSFTP commands
	6.2.2 Wildcards in PSFTP
	6.2.3 The 'open' command: start a session
	6.2.4 The 'quit' command: end your session
	6.2.5 The 'close' command: close your connection
	6.2.6 The 'help' command: get quick online help
	6.2.7 The 'cd' and 'pwd' commands: changing the remote working directory
	6.2.8 The 'lcd' and 'lpwd' commands: changing the local working directory
	6.2.9 The 'get' command: fetch a file from the server
	6.2.10 The 'put' command: send a file to the server
	6.2.11 The 'mget' and 'mput' commands: fetch or send multiple files
	6.2.12 The 'reget' and 'reput' commands: resuming file transfers
	6.2.13 The 'dir' command: list remote files
	6.2.14 The 'chmod' command: change permissions on remote files
	6.2.15 The 'del' command: delete remote files
	6.2.16 The 'mkdir' command: create remote directories
	6.2.17 The 'rmdir' command: remove remote directories
	6.2.18 The 'mv' command: move and rename remote files
	6.2.19 The '!' command: run a local Windows command

	6.3 Using public key authentication with PSFTP

	Chapter 7: Using the command-line connection tool Plink
	7.1 Starting Plink
	7.2 Using Plink
	7.2.1 Using Plink for interactive logins
	7.2.2 Using Plink for automated connections
	7.2.3 Plink command line options
	7.2.3.1 '-batch': disable all interactive prompts
	7.2.3.2 '-s': remote command is SSH subsystem
	7.2.3.3 '-share': Test and try to share an existing connection.
	7.2.3.4 '-shareexists': test for connection-sharing upstream
	7.2.3.5 '-sanitise-'_stream_: control output sanitisation
	7.2.3.6 -no-antispoof: turn off authentication spoofing protection prompt


	7.3 Using Plink in batch files and scripts
	7.4 Using Plink with CVS
	7.5 Using Plink with WinCVS

	Chapter 8: Using public keys for SSH authentication
	8.1 Public key authentication - an introduction
	8.2 Using PuTTYgen, the PuTTY key generator
	8.2.1 Generating a new key
	8.2.2 Selecting the type of key
	8.2.3 Selecting the size (strength) of the key
	8.2.4 Selecting the prime generation method
	8.2.5 The 'Generate' button
	8.2.6 The 'Key fingerprint' box
	8.2.7 Setting a comment for your key
	8.2.8 Setting a passphrase for your key
	8.2.9 Adding a certificate to your key
	8.2.10 Saving your private key to a disk file
	8.2.11 Saving your public key to a disk file
	8.2.12 'Public key for pasting into OpenSSH authorized_keys file'
	8.2.13 Parameters for saving key files
	8.2.13.1 PPK file version
	8.2.13.2 Options affecting passphrase hashing

	8.2.14 Reloading a private key
	8.2.15 Dealing with private keys in other formats
	8.2.16 PuTTYgen command-line configuration

	8.3 Getting ready for public key authentication

	Chapter 9: Using Pageant for authentication
	9.1 Getting started with Pageant
	9.2 The Pageant main window
	9.2.1 The key list box
	9.2.2 The 'Add Key' button
	9.2.3 The 'Remove Key' button

	9.3 The Pageant command line
	9.3.1 Making Pageant automatically load keys on startup
	9.3.2 Making Pageant run another program
	9.3.3 Integrating with Windows OpenSSH
	9.3.4 Unix-domain sockets: integrating with WSL 1
	9.3.5 Starting with the key list visible
	9.3.6 Restricting the Windows process ACL

	9.4 Using agent forwarding
	9.5 Loading keys without decrypting them
	9.6 Security considerations

	Chapter 10: Common error messages
	10.1 'The host key is not cached for this server'
	10.2 'WARNING - POTENTIAL SECURITY BREACH!'
	10.3 'This server presented a certified host key which was signed by a different certification authority ...'
	10.4 'SSH protocol version 2 required by our configuration but remote only provides (old, insecure) SSH-1'
	10.5 'The first cipher supported by the server is ... below the configured warning threshold'
	10.6 'Remote side sent disconnect message type 2 (protocol error): "Too many authentication failures for root"'
	10.7 'Out of memory'
	10.8 'Internal error', 'Internal fault', 'Assertion failed'
	10.9 'Unable to use key file', 'Couldn't load private key', 'Couldn't load this key'
	10.10 'Server refused our key', 'Server refused our public key', 'Key refused'
	10.11 'Access denied', 'Authentication refused'
	10.12 'No supported authentication methods available'
	10.13 'Incorrect MAC received on packet' or 'Incorrect CRC received on packet'
	10.14 'Incoming packet was garbled on decryption'
	10.15 'PuTTY X11 proxy: _various errors_'
	10.16 'Network error: Software caused connection abort'
	10.17 'Network error: Connection reset by peer'
	10.18 'Network error: Connection refused'
	10.19 'Network error: Connection timed out'
	10.20 'Network error: Cannot assign requested address'

	Appendix A: PuTTY FAQ
	A.1 Introduction
	A.1.1 What is PuTTY?

	A.2 Features supported in PuTTY
	A.2.1 Does PuTTY support SSH-2?
	A.2.2 Does PuTTY support reading OpenSSH or ssh.com SSH-2 private key files?
	A.2.3 Does PuTTY support SSH-1?
	A.2.4 Does PuTTY support local echo?
	A.2.5 Does PuTTY support storing settings, so I don't have to change them every time?
	A.2.6 Does PuTTY support storing its settings in a disk file?
	A.2.7 Does PuTTY support full-screen mode, like a DOS box?
	A.2.8 Does PuTTY have the ability to remember my password so I don't have to type it every time?
	A.2.9 Is there an option to turn off the annoying host key prompts?
	A.2.10 Will you write an SSH server for the PuTTY suite, to go with the client?
	A.2.11 Can PSCP or PSFTP transfer files in ASCII mode?

	A.3 Ports to other operating systems
	A.3.1 What ports of PuTTY exist?
	A.3.2 Is there a port to Unix?
	A.3.3 What's the point of the Unix port? Unix has OpenSSH.
	A.3.4 Will there be a port to Windows CE or PocketPC?
	A.3.5 Is there a port to Windows 3.1?
	A.3.6 Will there be a port to the Mac?
	A.3.7 Will there be a port to EPOC?
	A.3.8 Will there be a port to the iPhone?

	A.4 Embedding PuTTY in other programs
	A.4.1 Is the SSH or Telnet code available as a DLL?
	A.4.2 Is the SSH or Telnet code available as a Visual Basic component?
	A.4.3 How can I use PuTTY to make an SSH connection from within another program?

	A.5 Details of PuTTY's operation
	A.5.1 What terminal type does PuTTY use?
	A.5.2 Where does PuTTY store its data?
	A.5.3 Why do small PuTTY icons appear next to the login prompts?
	A.5.4 Why has Plink started saying 'Press Return to begin session'?

	A.6 HOWTO questions
	A.6.1 What login name / password should I use?
	A.6.2 What commands can I type into my PuTTY terminal window?
	A.6.3 How can I make PuTTY start up maximised?
	A.6.4 How can I create a Windows shortcut to start a particular saved session directly?
	A.6.5 How can I start an SSH session straight from the command line?
	A.6.6 How do I copy and paste between PuTTY and other Windows applications?
	A.6.7 How do I use all PuTTY's features (public keys, proxying, cipher selection, etc.) in PSCP, PSFTP and Plink?
	A.6.8 How do I use PSCP.EXE? When I double-click it gives me a command prompt window which then closes instantly.
	A.6.9 How do I use PSCP to copy a file whose name has spaces in?
	A.6.10 Should I run the 32-bit or the 64-bit version?

	A.7 Troubleshooting
	A.7.1 Why do I see 'Fatal: Protocol error: Expected control record' in PSCP?
	A.7.2 I clicked on a colour in the Colours panel, and the colour didn't change in my terminal.
	A.7.3 After trying to establish an SSH-2 connection, PuTTY says 'Out of memory' and dies.
	A.7.4 When attempting a file transfer, either PSCP or PSFTP says 'Out of memory' and dies.
	A.7.5 PSFTP transfers files much slower than PSCP.
	A.7.6 When I run full-colour applications, I see areas of black space where colour ought to be, or vice versa.
	A.7.7 When I change some terminal settings, nothing happens.
	A.7.8 My PuTTY sessions unexpectedly close after they are idle for a while.
	A.7.9 PuTTY's network connections time out too quickly when network connectivity is temporarily lost.
	A.7.10 When I cat a binary file, I get 'PuTTYPuTTYPuTTY' on my command line.
	A.7.11 When I cat a binary file, my window title changes to a nonsense string.
	A.7.12 My keyboard stops working once PuTTY displays the password prompt.
	A.7.13 One or more function keys don't do what I expected in a server-side application.
	A.7.14 Why do I see 'Couldn't load private key from ...'? Why can PuTTYgen load my key but not PuTTY?
	A.7.15 When I'm connected to a Red Hat Linux 8.0 system, some characters don't display properly.
	A.7.16 Since I upgraded to PuTTY 0.54, the scrollback has stopped working when I run 'screen'.
	A.7.17 Since I upgraded Windows XP to Service Pack 2, I can't use addresses like 127.0.0.2.
	A.7.18 PSFTP commands seem to be missing a directory separator (slash).
	A.7.19 Do you want to hear about 'Software caused connection abort'?
	A.7.20 My SSH-2 session locks up for a few seconds every so often.
	A.7.21 PuTTY fails to start up. Windows claims that 'the application configuration is incorrect'.
	A.7.22 When I put 32-bit PuTTY in C:\WINDOWS\SYSTEM32 on my 64-bit Windows system, 'Duplicate Session' doesn't work.
	A.7.23 After I upgraded PuTTY to 0.68, I can no longer connect to my embedded device or appliance.

	A.8 Security questions
	A.8.1 Is it safe for me to download PuTTY and use it on a public PC?
	A.8.2 What does PuTTY leave on a system? How can I clean up after it?
	A.8.3 How come PuTTY now supports DSA, when the website used to say how insecure it was?
	A.8.4 Couldn't Pageant use VirtualLock() to stop private keys being written to disk?
	A.8.5 Is the version of PuTTY in the Microsoft Store legit?

	A.9 Administrative questions
	A.9.1 Is putty.org your website?
	A.9.2 Would you like me to register you a nicer domain name?
	A.9.3 Would you like free web hosting for the PuTTY web site?
	A.9.4 Would you link to my web site from the PuTTY web site?
	A.9.5 Why don't you move PuTTY to SourceForge?
	A.9.6 Why can't I subscribe to the putty-bugs mailing list?
	A.9.7 If putty-bugs isn't a general-subscription mailing list, what is?
	A.9.8 How can I donate to PuTTY development?
	A.9.9 Can I have permission to put PuTTY on a cover disk / distribute it with other software / etc?
	A.9.10 Can you sign an agreement indemnifying us against security problems in PuTTY?
	A.9.11 Can you sign this form granting us permission to use/distribute PuTTY?
	A.9.12 Can you write us a formal notice of permission to use PuTTY?
	A.9.13 Can you sign _anything_ for us?
	A.9.14 If you won't sign anything, can you give us some sort of assurance that you won't make PuTTY closed-source in future?
	A.9.15 Can you provide us with export control information / FIPS certification for PuTTY?
	A.9.16 As one of our existing software vendors, can you just fill in this questionnaire for us?
	A.9.17 The 'sha1sums' / 'sha256sums' / etc files on your download page don't match the binaries.

	A.10 Miscellaneous questions
	A.10.1 Is PuTTY a port of OpenSSH, or based on OpenSSH or OpenSSL?
	A.10.2 Where can I buy silly putty?
	A.10.3 What does 'PuTTY' mean?
	A.10.4 How do I pronounce 'PuTTY'?


	Appendix B: Feedback and bug reporting
	B.1 General guidelines
	B.1.1 Sending large attachments
	B.1.2 Other places to ask for help

	B.2 Reporting bugs
	B.3 Reporting security vulnerabilities
	B.4 Requesting extra features
	B.5 Requesting features that have already been requested
	B.6 Support requests
	B.7 Web server administration
	B.8 Asking permission for things
	B.9 Mirroring the PuTTY web site
	B.10 Praise and compliments
	B.11 E-mail address

	Appendix C: PPK file format
	C.1 Overview
	C.2 Outer layer
	C.3 Private key encodings
	C.3.1 RSA
	C.3.2 DSA
	C.3.3 NIST elliptic-curve keys
	C.3.4 EdDSA elliptic-curve keys (Ed25519 and Ed448)

	C.4 Key derivation
	C.5 Older versions of the PPK format
	C.5.1 Version 2
	C.5.2 Version 1


	Appendix D: PuTTY Licence
	Appendix E: PuTTY hacking guide
	E.1 Cross-OS portability
	E.2 Multiple backends treated equally
	E.3 Multiple sessions per process on some platforms
	E.4 C, not C++
	E.5 Security-conscious coding
	E.6 Independence of specific compiler
	E.7 Small code size
	E.8 Single-threaded code
	E.9 Keystrokes sent to the server wherever possible
	E.10 640×480 friendliness in configuration panels
	E.11 Coroutines in protocol code
	E.12 Explicit vtable structures to implement traits
	E.13 Do as we say, not as we do

	Appendix F: PuTTY download keys and signatures
	F.1 Public keys
	F.2 Security details
	F.2.1 The Development Snapshots key
	F.2.2 The Releases key
	F.2.3 The Secure Contact Key
	F.2.4 The Master Keys

	F.3 Key rollover

	Appendix G: SSH-2 names specified for PuTTY
	G.1 Connection protocol channel request names
	G.2 Key exchange method names
	G.3 Encryption algorithm names
	G.4 Agent extension request names

	Appendix H: PuTTY authentication plugin protocol
	H.1 Requirements
	H.2 Transport and configuration
	H.3 Data formats and marshalling
	H.4 Protocol versioning
	H.5 Overview and sequence of events
	H.6 Message formats
	H.6.1 PLUGIN_INIT
	H.6.2 PLUGIN_INIT_RESPONSE
	H.6.3 PLUGIN_INIT_FAILURE
	H.6.4 PLUGIN_PROTOCOL
	H.6.5 PLUGIN_PROTOCOL_REJECT
	H.6.6 PLUGIN_PROTOCOL_ACCEPT
	H.6.7 PLUGIN_KI_SERVER_REQUEST
	H.6.8 PLUGIN_KI_SERVER_RESPONSE
	H.6.9 PLUGIN_KI_USER_REQUEST
	H.6.10 PLUGIN_KI_USER_RESPONSE
	H.6.11 PLUGIN_AUTH_SUCCESS
	H.6.12 PLUGIN_AUTH_FAILURE

	H.7 References

	Index


