OVERVIEW:
FIELD-TEST RELEASE
OF ACVC VERSION 1.11

1 TEST CHANGES

The AMO has made substantive changes in a number of tests. Some of these
revisions reflect interpretations of the standard that are different from
those used in Version 1.10. Such changes in interpretation were implemented
only after much consideration was given to AVO rulings, implementor comments,
recommendations from consulting Ada experts, and the AMO’s own reading of the
standard. In most cases, interpretations being proposed by the Ada Rapporteur
Group are in agreement with the positions taken in these tests. The most
important of these interpretation changes are des¢ribed below.

1.1 Required Support

Perhaps the most obvious change for Version 1.11 of the ACVC is in the
extension of many of the tests for Chapter 13 objectives. Most of these tests
are now ".ADA" tests, subject to the following rule:

ALL IMPLEMENTATIONS ARE EXPECTED TO PASS EVERY ".ADA" TEST.

Exceptions to the above rule are to be handled through the normal dispute
resolution process. It is expected that requests for NOT_APPLICABLE grading
will require justification in terms of hardware and environment restrictions
(see AI-00325). ’

1.2 Implementation Dependencies

Tests that make use of features that are explicitly left optional in the
LRM (predefined numeric types other than INTEGER, FLOAT, and DURATION; package
MACHINE_CODE) are left as ".DEP" tests. The same is true of tests that assume
some minimum value for SYSTEM.MAX DIGITS or SYSTEM.MAX MANTISSA. In addition,
tests for certain kinds of representation clauses are left as ".DEP" tests
because the difficulty of implementation is thought to outweigh the potential
user benefit. Included in this category are tests that require floating point
sizes other than those directly supported by the hardware (e.g., "for FLT'Size
use Float'Size / 2:"); access type sizes other than the default (assuming an
offset representation); and discrete type sizes that require biased
representations. Tests raising other issues that have not yet been resolved
by the language maintenance authorities have, by and large, been omitted from
the test suite.

As has historically been the case, tests with the ".DEP" extension may be
graded NOT_APPLICABLE provided that:

the implementation demonstrates a NOT_APPLICABLE result according to
the applicability criteria given in the test comments;

all other tests having the same applicability criteria exhibit the
same behavior; and

the behavior is consistent with Appendix F of the implementation’'s
documentation.



/,(;;hese conditions are not met, then the test must be passed, subject to the
aormal dispute resolution process.

¢
/

1.3 Meaning Of ‘Size Attribute And Length Clauses Specifying Size

After careful consideration of implementor comments, the apparent intent
of the standard, and the advice of recognized Ada experts, the ACVC
Maintenance Organization (AMO) has arrived at a consistent interpretation of
the ‘SIZE attribute for types and objects, and of representation clauses
specifying 'SIZE for a type. This interpretation is given below.

NOTE THAT THIS INTERPRETATION REPRESENTS A REVERSAL OF THE POSITION
TAKEN IN SOME TESTS IN VERSION 1.10.

1.3.1 The 'Size Attribute -

For the cases illustrated by the ACVC 1.11 tests, if OB is an object of
type T, then the expression "OB'SIZE >= T'SIZE" must evaluate to TRUE (whether -
or not a size clause has been given for type T). By using pragma PACK or a
record representation clause, array or record components having type T may be
represented in T'SIZE bits.

1.3.2 The ‘Size Representation Clause -

For the cases illustrated by the ACVC 1.11 tests, if the representation
clause "FOR T'SIZE USE K;" is accepted, then the expression "T'SIZE = K" must
evaluate to TRUE.

1.3.3 Required Acceptance Of ’‘Size Representation Clauses -

For the cases illustrated by the ACVC 1.11 tests, each implementation
must accept size clauses for integer types, enumeration types, and fixed point
types provided that every value of the type (or first named subtype) can be
mathematically represented in the specified number of bits, using an unsigned
representation, if necessary.

1.3.4 Optional Acceptance Of ’'Size Representation Clauses -

It is neither expected nor particularly desirable that a representation
clause for a floating point type be accepted if it specifies a size other than
that of one of the implementation’s predefined floating point types. A few
" DEP" tests in ACVC 1.1l give representation clauses requiring floating point
sizes that are not likely to agree with the implementation’s predefined types.

It is not required that a representation clause for an access type be
accepted if it specifies a size other than the default size. A few ".DEP"
tests in ACVC 1.11 give representation clauses requiring smaller sizes than
the default. In these cases, an offset representation is expected, but it is
perfectly acceptable to reject such size clauses.



A/{fé Sizes Of Objects -

4 . Note that, if OB is an object of type T and OB is given by an object
declaration, then the expression "OB'SIZE > T'SIZE" may evaluate to TRUE.
Likewise, for an object of type T that is a component of an array, ARR, OTr a
record, REC, for whose type no PACK pragma or record representation clause has
been given, the expressions "ARR(INDEX)'SIZE > T'SIZE" and "REC.COMP'SIZE >
T'SIZE" may evaluate to TRUE. However, if a PACK pragma has been given for
the array or record type, or if a record representation clause contains a
component clause specifying that COMP is represented in T'SIZE bits, then the
expressions "ARR(INDEX)'SIZE = T'SIZE" and "REC.COMP'SIZE = T'SIZE" are
expected to yield the value TRUE.

1.4 Effect Of Pragma Pack On Component Type Representation

The following interpretation of pragma PACK is based upon careful
consideration of implementor comments, the apparent intent of the standard,
and the advice of recognized Ada experts. : S R .

NOTE THAT THIS INTERPRETATION REPRESENTS A REVERSAL OF THE
POSITION TAKEN BY SOME TESTS IN VERSION 1.10.

If OUTER is an array type or a record type with components of a composite
type, INNER, then "PRAGMA PACK (OUTER);" can only remove gaps between the
components of OUTER. This pragma is not permitted to affect the
representation of the components of type INNER. (ACVC 1.10 tests that
expected the pragma to affect component representation have been removed. )

1.5 Use Of Unchecked Conversion

A number of tests use one of two generic procedures to verify that
representation clauses are actually obeyed. These two generic procedures
(LENGTH_CHECK and ENUM_CHECK) make use of instantiations of
UNCHECKED_CONVERSION. LENGTH_CHECK converts a value of the type to a Boolean
array of the same size as the type; copies the resulting array to another
location; converts the value at the new location to the given type; and
compares it to the original value. ENUM_CHECK converts both a given
enumeration value and its expected integer code to Boolean arrays of the same
size and compares the Boolean arrays. In each case, the compared values are
expected to be equal.

1.6 Non-Binary Values Of ’'Small

Several tests involving representation clauses that specify ‘Small for
fixed point types now use values for ’'Small that are not powers of two.
(Powers of ten are most frequently used.) All implementations are expected to
pass the tests requiring ‘Small values that are powers of ten; tests requiring
‘Small values that are neither powers of two nor powers of ten are categorized
as ".DEP" tests. '



/

A
_/DELETION OF TESTS
o

oy

. A number of tests that were included in Version 1.10 have been removed
from the suite. In some cases, the removal of the test is based upon the
opinion that the benefit to users of Ada is not sufficient to justify the
extra complexity added to the test suite. In other cases, tests are being
withheld until related language issues can be resolved.

The test features leading to the greatest numbers of removals are:
Representation clauses for derived fixed point types;

Representation clauses specifying other than the default size for
access types (except for a few “.DEP" tests);

Representation clauses specifying other than the default size for
floating point types (except for a few ".DEP" tests); and

Address clauses for constants, subprograms, packages, and task units.
3 NEW MACRO SUBSTITUTION TESTS

Tests for several areas have been rewritten as parameterized (macro
substitution) tests, with extension ".TST". These tests are required of all
implementations, unless otherwise indicated by the inclusion of APPLICABILITY
CRITERIA in the test header. The substitutions are used to specify values for
task storage size clauses, access type size clauses, and record alignment
clauses.

4 SUPPORT CHANGES

The AVAT tool and the support package SPPRT13 have been modified, but the
AVAT modifications are not complete.

4.1 AVAT Changes

In addition to correcting known errors in some AVAT units, the report
utility in the package DATA_COLLECTION has been modified so that the lists of
potentially not-applicable tests are not output. The test lists themselves
appear in the AVAT units, but are now obsolete. During the field-test period,
the test lists will be updated, and the report utility will be restored to its
previous (ACVC 1.10) state. In addition, since many of the features tested by
the 1.10 version of AVAT are now required, the corresponding units will be
deleted from the AVAT system.

4.2 SPPRT13 Changes

The ACVC 1.10 version of the SPPRT13 package required implementors to
provide their own versions of the package body. In additiom, for those
implementations requiring the expression of an 'Address clause to be static,
it was necessary to modify the package specification by replacing function
specifications with constant declarations.

The ACVC 1.11 version of the SPPRT13 package is somewhat more
sophisticated, and many implementors will find it possible to use the package
with no modification other than through the traditional macro substitution
practice. Thus, the package is now contained in the file "SPPRT13SP.TST", and
no package body is needed. The specification declares constants of type
System.Address (using the same names as the ACVC 1.10 package, with some
deletions and additions) whose values are given by macro substitutioms. For
example, SPPRT13 includes the declaration "VARIABLE_ADDRESS : CONSTANT



//égéss = SVARIABLE_ADDRESS;". If appropriate literals, constants, or
edafined function calls can be used to initialize these constants, then they
“should-be substituted for the macro symbols. Otherwise, the package FCNDECL
Y must be modified (see below).

The specification of the package FCNDECL is contained in the file
"FCNDECL.ADA". The package SPPRT13 includes a context clause: "WITH FCNDECL;
USE FCNDECL;". The version of FCNDECL supplied with the ACVC is an empty
package specification. If appropriate literals, constants, or predefined
function calls cannot be used to initialize the constants declared in package
SPPRT13, then the implementor must declare appropriate functions in the
specification of FCNDECL and provide bodies for them in a package body or by
means of a pragma INTERFACE.

5 TEST CHANGES FOR FINAL RELEASE

As previously agreed to by the AVF managers and the AVO, the AMO will
-make changes, as required, to the test suite during the field-test period.
Tests in the field-test release, if found during the field-test period to
contain errors, will be removed or corrected. Tests that have become
incorrect due to nev language interpretations made during the field-test
period will either be removed from the suite or changed to reflect the new
interpretations. As a general rule, the AMO will opt to remove incorrect
tests rather than to correct them to minimize any negative impact on
implementors. A test will be modified for the official release only if its
need is great and the anticipated negative impact of the change is small. The
number of revisions will be held to a minimum, consistent with the goal of
producing correct tests.

AKVCka{VﬁemD‘MéT
Wl 2



