Appendix

In order to establish a correct formulae for the critical values of the Mann-Whitney test
the following number theoretical question is important: How many partitions of a natural
number a exist such that

a=aytax+..an, 0=a1=..<an =N

where n; and n, are given?
We will denote the number of those partitions as pn, n,(a) with py, n,(a) =0if a < 0 or
a > nin». Because
Pnyn, (@) = Pnyn, (@) (1)

(see [[Ostmann (1956), p. 32ff.]) we can restrict ourselves to the case n; < np. A simple
modification of this proof shows that also py, n, (@) = pn,n, (M1 - N2 — a) is true.
One of the first recursion formulaes was already known to Mann and Whitney:

Prin: (@) = Pny—1n, (@ — N2) + Puyno—1(a), (2)

but this recursion involves partitions with different numbers 1, and n,. Our aim is to
establish a formulae using only py, «,(a) with different a.
To this end we consider the generating function on R

nin
Fun,(2) 1= D pum(@)z% |z| <1. (3)
a=0
Since py, n,(a) is equal to the number of partitions we immediately have another equation
for the generating function
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Fpin,(2) = Z Z Z Zartaz+..an,

a;=0azx=ai any =Aan-1

Our first observation is the fact that the generating function can be written as a product.

Lemma 1 We have
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PROOF: We prove the claim by induction over n,. Because of () we start with n; = 1:
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The induction step uses the well known recursion (B):
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which was to be shown. [ |

In order to develop another recursion formulae we define the following function

1, where 1l <d < n;,

omny,ny) = >  ed whereeg =10, else,

n mod d=0
—1, wheren,+1=<d=<mny+ni.

Then, the following holds.

Lemma 2 We have '
a—

apnin, (@) = D puin, (Do (a—i;n1,no).
i=0
PROOF: In order to verify the proposition we start with
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But this implies
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Fpin(2) = Fuymy (2) D 0(m5ny,mz) 2™
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which in turn gives the required equation by comparison of coefficients. |
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